【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為(為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
【答案】(1) , ;(2) 或.
【解析】試題分析: (Ⅰ)根據(jù)加減相消法將曲線參數(shù)方程化為普通方程,利用將曲線(Ⅱ)先將直線參數(shù)方程轉(zhuǎn)化為(為參數(shù), ),再根據(jù)直線參數(shù)方程幾何意義由得,最后將直線參數(shù)方程代入,利用韋達(dá)定理得關(guān)于的方程,解得的值.
試題解析: (Ⅰ)曲線參數(shù)方程為,∴其普通方程,
由曲線的極坐標(biāo)方程為,∴
∴,即曲線的直角坐標(biāo)方程.
(Ⅱ)設(shè)、兩點(diǎn)所對(duì)應(yīng)參數(shù)分別為,聯(lián)解得
要有兩個(gè)不同的交點(diǎn),則,即,由韋達(dá)定理有
根據(jù)參數(shù)方程的幾何意義可知,
又由可得,即或
∴當(dāng)時(shí),有,符合題意.
當(dāng)時(shí),有,符合題意.
綜上所述,實(shí)數(shù)的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為萬(wàn)元,每生產(chǎn)千件需另投入萬(wàn)元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的直角頂點(diǎn)在軸上,點(diǎn)為斜邊的中點(diǎn),且平行于軸.
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)設(shè)點(diǎn)的軌跡為曲線,直線與的另一個(gè)交點(diǎn)為.以為直徑的圓交軸于即此圓的圓心為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠有4臺(tái)大型機(jī)器,在一個(gè)月中,一臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障需要維修的概率為.
(1)若出現(xiàn)故障的機(jī)器臺(tái)數(shù)為,求的分布列;
(2) 該廠至少有多少名工人才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位工人1萬(wàn)元的工資,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就使該廠產(chǎn)生5萬(wàn)元的利潤(rùn),否則將不產(chǎn)生利潤(rùn),若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為y,觀影人數(shù)記為x,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后y與x的函數(shù)圖象,給出下列四種說(shuō)法,①圖(2)對(duì)應(yīng)的方案是:提高票價(jià),并提高成本;②圖(2)對(duì)應(yīng)的方案是:保持票價(jià)不變,并降低成本;③圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并保持成本不變;④圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并降低成本.其中,正確的說(shuō)法是( 。
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探. 由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:
(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計(jì)的預(yù)報(bào)值;
(Ⅱ)現(xiàn)準(zhǔn)備勘探新井,若通過(guò)1、3、5、7號(hào)井計(jì)算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過(guò)10%,則使用位置最接近的已有舊井,否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?
(參考公式和計(jì)算結(jié)果:)
(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心,AB為半徑的圓弧(在正方形內(nèi),包括邊界點(diǎn))上的任意一點(diǎn),則的取值范圍是________; 若向量,則的最小值為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為, 為焦點(diǎn)是的拋物線上一點(diǎn), 為直線上任一點(diǎn), 分別為橢圓的上,下頂點(diǎn),且三點(diǎn)的連線可以構(gòu)成三角形.
(1)求橢圓的方程;
(2)直線與橢圓的另一交點(diǎn)分別交于點(diǎn),求證:直線過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com