求證:
(1)
(2)
證明見解析.
解析試題分析:三角恒等式的證明也遵循從繁化簡的原則,當然三角函數(shù)還有函數(shù)名稱的轉化與角的轉化.(1)本題從左向右變化,首先把左邊分子用兩角差的正弦公式展開,就能證明,當然也可從右向左轉化(切化弦),;(2)這個證明要求我們善于聯(lián)想,首先左邊的和怎么求?能否變?yōu)閮蓴?shù)的差(利用裂項相消的思想方法)?這個想法實際上在第(1)小題已經(jīng)為我們做了,只要乘以(因為每個分母上的兩角的差都是),每個分式都化為兩數(shù)的差,而且恰好能夠前后項相消.
試題解析:證明:(1) 3分
6分
(2)由(1)得
() 8分
可得
10分
12分
即. 14分
考點:兩角差的正弦公式,同角三角函數(shù)關系.
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,扇形AOB,圓心角AOB的大小等于,半徑為2,在半徑OA上有一動點C,過點C作平行于OB的直線交弧AB于點P.
(1)若C是半徑OA的中點,求線段PC的長;
(2)設,求面積的最大值及此時的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知△ABC的內角A、B、C的對邊分別為a、b、c,sin Ccos C-cos2C=,且c=3.
(1)求角C;
(2)若向量m=(1,sin A)與n=(2,sin B)共線,求a、b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com