若x、y滿足不等式
x+y≤1
x+1≥0
x-y≤1
,則(2x+y)2的最小值(  )
A、-4B、16C、4D、0
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:設z=2x+y,作出不等式組對應的平面區(qū)域,利用線性規(guī)劃的知識即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
設z=2x+y,由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當直線y=-2x+z經(jīng)過點C(1,0)時,直線y=-2x+z的截距最大,
此時z最大,此時z=2.
當直線y=-2x+z經(jīng)過點B時,直線y=-2x+z的截距最小,
此時z最小,
x=-1
x-y=1
,解得
x=-1
y=-2
,即B(-1,-2),
此時z=-2-2=-4,
即-4≤z≤2,
則0≤z2≤16,
故(2x+y)2的最小值為0,
故選:D
點評:本題主要考查線性規(guī)劃的應用,結合目標函數(shù)的幾何意義,利用數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

當m=
 
時,函數(shù)y=(m-2)x2+(m+5)x是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個袋中有4個大小相同的小球,其中紅球1個,白球2個,黑球1個,現(xiàn)從袋中有放回地取球,每次隨機取一個,求:(Ⅰ)連續(xù)取兩次都是白球的概率;
(Ⅱ)若取一個紅球記2分,取一個白球記1分,取一個黑球記0分,連續(xù)取兩次分數(shù)之和不小于2分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx.若f(x)+1≥ax+cosx在[0,π]上恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某水產(chǎn)試驗廠實行某種魚的人工孵化,10000個卵能孵化出8513尾魚苗.根據(jù)概率的統(tǒng)計定義解答下列問題:
(1)求這種魚卵的孵化概率(孵化率);
(2)30000個魚卵大約能孵化多少尾魚苗?
(3)要孵化5000尾魚苗,大概得準備多少魚卵?(精確到百位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanθ=2,則
sin(
π
2
+θ)-cos(π-θ)
sin(
π
2
+θ)-sin(π-θ)
=(  )
A、2
B、-2
C、0
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復數(shù)范圍內(nèi),方程x2-2x+2=0的兩個根是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
(1)2(1-sinα)(1+cosα)=(1-sinα+cosα)2
(2)sin2α+sin2β-sin2α•sin2β+cos2αcos2β=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在四邊形ABCD中,∠ABC=90°,BD平分∠ABC,∠ADC=135°,BC=8,AB=9,求CD的長.

查看答案和解析>>

同步練習冊答案