已知曲線C的極坐標(biāo)方程是ρ=2sin θ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線lx軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求MN的最大值.
(1) x2y2-2y=0. (2)+1
(1)曲線C的極坐標(biāo)方程可化為ρ2=2ρsin θ.
x2y2ρ2xρcos θyρsin θ,所以曲線C的直角坐標(biāo)方程為x2y2-2y=0.
(2)將直線l的參數(shù)方程化為直角坐標(biāo)方程,
y=- (x-2).
y=0,得x=2,即M點(diǎn)的坐標(biāo)為(2,0).
又曲線C為圓,圓C的圓心坐標(biāo)為(0,1),
半徑r=1,則MC
所以MNMCr+1,即MN的最大值為+1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,曲線C1的參數(shù)方程為:為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并取與直角坐標(biāo)系相同的長度單位,建立極坐標(biāo)系,曲線C2是極坐標(biāo)方程為:,
(1)求曲線C2的直角坐標(biāo)方程;
(2)若P,Q分別是曲線C1和C2上的任意一點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在極坐標(biāo)系中,求點(diǎn)M關(guān)于直線的對稱點(diǎn)N的極坐標(biāo),并求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-)=1,M,N分別為C與x軸,y軸的交點(diǎn).
(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo).
(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcosa,且點(diǎn)A在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知曲線的參數(shù)方程是.(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,則在曲線上到直線的距離為的點(diǎn)有________個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若極坐標(biāo)方程為ρcos θ=4的直線與曲線 (t為參數(shù))相交于A,B兩點(diǎn),則|AB|=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線的極坐標(biāo)方程為,則極點(diǎn)到該直線的距離為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,極點(diǎn)到直線的距離為_______.

查看答案和解析>>

同步練習(xí)冊答案