【題目】設(shè)橢圓的離心率是,A、B分別為橢圓的左頂點(diǎn)、上頂點(diǎn),原點(diǎn)O到AB所在直線的距離為.
(I)求橢圓C的方程;
(Ⅱ)已知直線與橢圓相交于不同的兩點(diǎn)M,N(均不是長軸的端點(diǎn)),,垂足為H,且,求證:直線恒過定點(diǎn).
【答案】(I)(Ⅱ)見解析
【解析】
(I)直線AB的方程為:1,化為:bx﹣ay+ab=0.原點(diǎn)O到AB所在直線的距離為,可得,化為:12(a2+b2)=7a2b2,又,
a2=b2+c2.聯(lián)立解出即可得出.
(Ⅱ)設(shè)M(x1,y1),N(x2,y2).聯(lián)立,化為:(3+4k2)x2+8kmx+4m2﹣12=0,△>0,由AH⊥MN,垂足為H,且2,可得AM⊥AN.可得(x1+2)(x2+2)+y1y2=(2+km)(x1+x2)+(1+k2)x1x2+4+m2=0,把根與系數(shù)的關(guān)系代入化簡即可得出.
(I)直線AB的方程為:1,化為:bx﹣ay+ab=0.
∵原點(diǎn)O到AB所在直線的距離為,∴,
化為:12(a2+b2)=7a2b2,又,a2=b2+c2.
聯(lián)立解得a=2,b,c=1.
∴橢圓C的方程為:1.
(Ⅱ)設(shè)M(x1,y1),N(x2,y2).
聯(lián)立,化為:(3+4k2)x2+8kmx+4m2﹣12=0,
△=64k2m2﹣4(3+4k2)(4m2﹣12)>0,(*)
∴x1+x2,x1x2,
∵AH⊥MN,垂足為H,且2,
∴AM⊥AN.
∴(x1+2)(x2+2)+y1y2=(x1+2)(x2+2)+(kx1+m)(kx2+m)=(2+km)(x1+x2)+(1+k2)x1x2+4+m2=0,
∴﹣(2+km)(1+k2)4+m2,
∴4k2﹣16km+7m2=0,
解得km,或m.滿足(*)
∴直線l方程為:y=m(x+1),或y=m.
直線y=m(x+1)恒過定點(diǎn)A(﹣2,0),舍去.
直線y=m恒過定點(diǎn)(,0),
∴直線l恒過定點(diǎn)(,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市民用水?dāng)M實(shí)行階梯水價(jià),每人用水量中不超過立方米的部分按4元/立方米收費(fèi),超出立方米的部分按10元/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
(1)如果為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米, 至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)時(shí),估計(jì)該市居民該月的人均水費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)行的個(gè)稅法修正案規(guī)定:個(gè)稅免征額由原來的2000元提高到3500元,并給出了新的個(gè)人所得稅稅率表:
全月應(yīng)納稅所得額 | 稅率 |
不超過1500元的部分 | 3% |
超過1500元至4500元的部分 | 10% |
超過4500元至9000元的部分 | 20% |
超過9000元至35000元的部分 | 25% |
…… | … |
例如某人的月工資收入為5000元,那么他應(yīng)納個(gè)人所得稅為:(元).
(Ⅰ)若甲的月工資收入為6000元,求甲應(yīng)納的個(gè)人收的稅;
(Ⅱ)設(shè)乙的月工資收入為元,應(yīng)納個(gè)人所得稅為元,求關(guān)于的函數(shù);
(Ⅲ)若丙某月應(yīng)納的個(gè)人所得稅為1000元,給出丙的月工資收入.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號,某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(jià)x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程;
(2)用表示用(1)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:;參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽.若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為,乙獲勝的概率為各局比賽結(jié)果相互獨(dú)立.則甲在4局以內(nèi)(含4局)贏得比賽的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是圓上的任意一點(diǎn),是過點(diǎn)且與軸垂直的直線,是直線與軸的交點(diǎn),點(diǎn)在直線上,且滿足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)已知直線與曲線交于,兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=1,M為AB的中點(diǎn),將△ADM沿DM翻折.在翻折過程中,當(dāng)二面角A—BC—D的平面角最大時(shí),其正切值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一布袋中裝有個(gè)小球,甲,乙兩個(gè)同學(xué)輪流且不放回的抓球,每次最少抓一個(gè)球,最多抓三個(gè)球,規(guī)定:由乙先抓,且誰抓到最后一個(gè)球誰贏,那么以下推斷中正確的是( )
A. 若,則乙有必贏的策略B. 若,則甲有必贏的策略
C. 若,則甲有必贏的策略D. 若,則乙有必贏的策略
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com