【題目】如圖,在直三棱柱中, , ,點分別為的中點.

(1)證明: 平面;

2)若,求二面角的余弦值.

【答案】1證明見解析;(2.

【解析】試題分析:1連接, ,點, 分別為, 的中點,可得 的一條中位線, ,由線面平行的判定定理可得結(jié)論;2先利用勾股定理證明,由題意以點 為坐標(biāo)原點, 軸, 軸, 軸建立空間直角坐標(biāo)系分別求出平面與平面的一個法向量,根據(jù)空間向量夾角余弦公式,可得結(jié)果;

試題解析:(1)證明:連接,,點,分別為 的中點,所以為△的一條中位線, ,

平面 平面,

所以平面.

(2)設(shè),,, ,

,得,解得,

由題意以點為坐標(biāo)原點,軸,軸,

軸建立空間直角坐標(biāo)系.

可得,,

,, , ,

設(shè)為平面的一個法向量,則

,得,同理可得平面的一個法向量為

設(shè)二面角的平面角為,

,

,

所以,二面角的余弦值為.

【方法點晴】本題主要考查線面平行的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點.
(1)證明:AC1∥平面BDE;
(2)證明:AC1⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系中, 為極點,半徑為2的圓的圓心坐標(biāo)為.

1)求圓的極坐標(biāo)方程;

2)設(shè)直角坐標(biāo)系的原點與極點重合, 軸非負(fù)關(guān)軸與極軸重合,直線的參數(shù)方程為為參數(shù)),由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了解本市2萬名學(xué)生的漢字書寫水平,在全市范圍內(nèi)進(jìn)行了漢字聽寫考試,現(xiàn)從某校隨機(jī)抽取了50名學(xué)生,將所得成績整理后,發(fā)現(xiàn)其成績?nèi)拷橛?/span>之間,將其成績按如下分成六組,得到頻數(shù)分布表

成績

人數(shù)

4

10

16

10

6

4

1)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖;

2)估算該校50名學(xué)生成績的平均值和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

3)以該校50名學(xué)生成績的頻率作為概率,試估計該市分?jǐn)?shù)在的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知n為正整數(shù),數(shù)列{an}滿足an>0, ,設(shè)數(shù)列{bn}滿足
(1)求證:數(shù)列 為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實數(shù)t的值;
(3)若數(shù)列{bn}是等差數(shù)列,前n項和為Sn , 對任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實數(shù)a的取值范圍是(
A.
B.(
C.( ,1)
D.( ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分16分如圖,有一個長方形地塊ABCD,邊AB為2km, AD為4 km.,地塊的一角是濕地圖中陰影部分,其邊緣線AC是以直線AD為對稱軸,以A為頂點的拋物線的一部分.現(xiàn)要鋪設(shè)一條過邊緣線AC上一點P的直線型隔離帶EF,E,F(xiàn)分別在邊AB,BC上隔離帶不能穿越濕地,且占地面積忽略不計.設(shè)點P到邊AD的距離為t單位:kmBEF的面積為S單位: .

(1)求S關(guān)于t的函數(shù)解析式,并指出該函數(shù)的定義域;

2是否存在點P,使隔離出的BEF面積S超過3 ?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分別是棱BC,CC1上的點(點D 不同于點C),且AD⊥DE,F(xiàn)為B1C1的中點.求證:

(1)平面ADE⊥平面BCC1B1
(2)直線A1F∥平面ADE.

查看答案和解析>>

同步練習(xí)冊答案