在平面直角坐標(biāo)系中,已知直線的參數(shù)方程是(為參數(shù));以 為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的極坐標(biāo)方程為.由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
.
解析試題分析:先將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,再把直線上的點(diǎn)的坐標(biāo)(含參數(shù))代入,化為求函數(shù)的最值問(wèn)題,也可將直線的參數(shù)方程化為普通方程,根據(jù)勾股定理轉(zhuǎn)化為求圓心到直線上最小值的問(wèn)題
試題解析:因?yàn)閳A的極坐標(biāo)方程為,所以,
所以圓的直角坐標(biāo)方程為,圓心為,半徑為1, 4分
因?yàn)橹本的參數(shù)方程為(為參數(shù)),
所以直線上的點(diǎn)向圓C 引切線長(zhǎng)是
,
所以直線上的點(diǎn)向圓C引的切線長(zhǎng)的最小值是. 10分
考點(diǎn):直線的參數(shù)方程和圓的極坐標(biāo)方程,圓的切線長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-)=.
(1)求圓O和直線l的直角坐標(biāo)方程.
(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線l的極坐標(biāo)方程為ρcos=a,且點(diǎn)A在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(是參數(shù)).若直線與圓相切,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓 已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn)
(1)求曲線,的方程;
(2)若點(diǎn),在曲線上,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為( t為參數(shù),0≤<).
(Ⅰ)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說(shuō)明曲線C的形狀;
(Ⅱ)若直線經(jīng)過(guò)點(diǎn)(1,0),求直線被曲線C截得的線段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.
(I)判斷直線與圓C的位置關(guān)系;
(Ⅱ)若點(diǎn)P(x,y)在圓C上,求x +y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.已知直線l的極坐標(biāo)方程為ρsin(θ-)=6,圓C的參數(shù)方程為(θ為參數(shù)),求直線l被圓C截得的弦長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com