設(shè)、是三個(gè)非零向量,且不共線,若關(guān)于x的方程的兩個(gè)根為x1,x2,則( )
A.x1>x2
B.x1=x2
C.x1<x2
D.x1,x2大小無(wú)法確定
【答案】分析:由題意可得 +•x1+=0,+•x2+=0.把這兩個(gè)等式相減可得 (x1-x2)[(x1+x2+]=0.由于(x1+x2+≠0,可得 x1-x2=0.
解答:解:由于關(guān)于x的方程的兩個(gè)根為x1,x2,故有+•x1+=0,+•x2+=0.
把這兩個(gè)等式相減可得 (x1-x2)[(x1+x2+]=0.
由于 、是三個(gè)非零向量,且不共線,∴(x1+x2+≠0,∴x1-x2=0,
故選B.
點(diǎn)評(píng):本題主要考查兩個(gè)向量共線的條件,得到(x1-x2)[(x1+x2+]=0,是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
b
,
c
是三個(gè)非零向量,給出以下四個(gè)命題:
①若
a
b
+|
a
||
b
|=0
,則
a
.
b

②若
a
2
=
b
2
,則
a
=
b
a
=-
b

③若|
a
+
b
|=|
a
-
b
|
,則
a
b
;
④若
a
b
=
a
c
,則
b
=
c

則所有正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:{
a
,
b
c
}為空間的一個(gè)基底,命題q:
a
b
c
是三個(gè)非零向量,則命題p是q的
充分不必要
充分不必要
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:
a
b
,
c
是三個(gè)非零向量;命題q:{
a
,
b
,
c
}
為空間的一組基,則命題q是命題p的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紹興一模)設(shè)
a
b
、
c
是三個(gè)非零向量,且
a
b
不共線,若關(guān)于x的方程
a
x2+
b
x+
c
=
0
的兩個(gè)根為x1,x2,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案