對任意的實數(shù)a,b,記max{a,b}=,若F(x)=max{f(x),g(x)}(x∈R),其中奇函數(shù)y=f(x)在x=1時有極小值-2,y=g(x)是正比例函數(shù),函數(shù)y=f(x)(x≥0)與函數(shù)y=g(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是( )

A.y=F(x)為奇函數(shù)
B.y=F(x)有極大值F(1)且有極小值F(-1)
C.y=F(x)在(-3,0)上不是單調(diào)函數(shù)
D.y=F(x)的最小值為-2且最大值為2
【答案】分析:利用奇函數(shù)的性質(zhì)和新定義即可得出.
解答:解:由圖象可得g(x)=;
根據(jù)當x≥0時,由f(x)的圖象和奇函數(shù)y=f(x)在x=1時有極小值-2,可知:當x≤0時,在x=-1時取得最大值2,及其f(x)的圖象如圖所示.
而F(x)=,
因此當-3≤x≤0時,函數(shù)F(x)不單調(diào).
故選C.
點評:正確理解奇函數(shù)的性質(zhì)和新定義是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

14、已知如果函數(shù)f(x)滿足:對任意的實數(shù)a,b,都有f(a+b)=f(a)•f(b),且f(1)=2,則f(0)+f(3)=
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

15、函數(shù)f(x)對任意的實數(shù)a,b都滿足:f(a+b)=f(a)+f(b),且f(2)=1,則f(-2)=
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)滿足對任意的實數(shù)a,b都有f(a+b)=f(a)•f(b),且f(1)=2,則
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2010)
f(2009)
=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•煙臺一模)對任意的實數(shù)a,b,記max{a,b}=
a(a≥b)
b(a<b)
,若F(x)=max{f(x),g(x)}(x∈R),其中奇函數(shù)y=f(x)在x=1時有極小值-2,y=g(x)是正比例函數(shù),函數(shù)y=f(x)(x≥0)與函數(shù)y=g(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意的實數(shù)a、b,a≠0,不等式|2a+3b|+|2a-3b|≥|a|(|x-1|+|x+1|),則實數(shù)x的取值范圍是
[-2,2]
[-2,2]

查看答案和解析>>

同步練習冊答案