已知函數(shù),,且的最小正周期為.
(Ⅰ)若,,求的值;
(Ⅱ)求函數(shù)的單調(diào)增區(qū)間.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)由已知可得,且由,得,解三角方程并注意,取相應(yīng)范圍的根;(Ⅱ)將變形為,利用復(fù)合函數(shù)的單調(diào)性,只需
,解不等式并表示成區(qū)間的形式,即得單調(diào)遞增區(qū)間.
試題解析:(Ⅰ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d2/7/1qpkd4.png" style="vertical-align:middle;" />的最小正周期為,所以,解得.
由,得,即,所以,.因?yàn)?,
所以.
(Ⅱ)解:函數(shù) ,由 ,解得
所以函數(shù)的單調(diào)增區(qū)間為.
考點(diǎn):1、三角方程;2、兩角和與差的三角函數(shù);3、三角函數(shù)的單調(diào)性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)在上的最小值,并寫出取最小值時(shí)相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的部分圖象如圖所示,其中點(diǎn)為最高點(diǎn),點(diǎn)為圖象與軸的交點(diǎn),在中,角對邊為,,且滿足.
(Ⅰ)求的面積;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,分別為角的對邊,的面積S滿足
(Ⅰ)求角A的值;
(Ⅱ)若,設(shè)角B的大小為x,用x表示c,并求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,兩座建筑物的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是9和15,從建筑物的頂部看建筑物的視角.
⑴求的長度;
⑵在線段上取一點(diǎn)點(diǎn)與點(diǎn)不重合),從點(diǎn)看這兩座建筑物的視角分別為問點(diǎn)在何處時(shí),最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)向量a=(2,sin θ),b=(1,cos θ),θ為銳角.
(1)若a·b=,求sin θ+cos θ的值;
(2)若a∥b,求sin的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com