【題目】拋物線(xiàn)有光學(xué)性質(zhì),即由其焦點(diǎn)射出的光線(xiàn)經(jīng)拋物線(xiàn)反射后,沿平行于拋物線(xiàn)對(duì)稱(chēng)軸的方向射出,反之亦然.如圖所示,今有拋物線(xiàn),一光源在點(diǎn)處,由其發(fā)出的光線(xiàn)沿平行于拋物線(xiàn)的對(duì)稱(chēng)軸的方向射向拋物線(xiàn)上的點(diǎn),反射后,又射向拋物線(xiàn)上的點(diǎn),再反射后又沿平行于拋物線(xiàn)的對(duì)稱(chēng)軸方向射出,途中遇到直線(xiàn)上的點(diǎn),再反射后又射回點(diǎn).設(shè),兩點(diǎn)的坐標(biāo)分別是,.

1)證明:

2)若四邊形是平行四邊形,且點(diǎn)的坐標(biāo)為.求直線(xiàn)的方程.

【答案】(1)見(jiàn)解析;(2)

【解析】

1)由拋物線(xiàn)的性質(zhì)及題意,設(shè),代入拋物線(xiàn)方程,利用根與系數(shù)的關(guān)系,即可求解.

2)由題意,求得,設(shè),則,求得,得到直線(xiàn)的斜率為,即可得到直線(xiàn)的方程.

1)由拋物線(xiàn)的性質(zhì)及題意知,則光線(xiàn)必過(guò)拋物線(xiàn)的焦點(diǎn),

設(shè),代入拋物線(xiàn)方程得:,

所以.

2)由題意知,,所以,

關(guān)于直線(xiàn)對(duì)稱(chēng)與直線(xiàn)重合,

設(shè),則,解得,所以直線(xiàn)的斜率為,

所以直線(xiàn)的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)分別與兩個(gè)定點(diǎn),的連線(xiàn)的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線(xiàn)與軌跡交于,兩點(diǎn),判斷直線(xiàn)與以線(xiàn)段為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個(gè)動(dòng)點(diǎn),點(diǎn),若的最小值為0,則函數(shù)的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)平面垂直,下列命題

①一個(gè)平面內(nèi)已知直線(xiàn)必垂直于另一個(gè)平面內(nèi)的任意一條直線(xiàn)

②一個(gè)平面內(nèi)的已知直線(xiàn)必垂直于另一個(gè)平面的無(wú)數(shù)條直線(xiàn)

③一個(gè)平面內(nèi)的任一條直線(xiàn)必垂直于另一個(gè)平面

④過(guò)一個(gè)平面內(nèi)任意一點(diǎn)作交線(xiàn)的垂線(xiàn),則此垂線(xiàn)必垂直于另一個(gè)平面

其中不正確命題的個(gè)數(shù)是(

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列幾個(gè)命題:①p,則q的否命題是,則;②pq的必要條件,rq的充分不必要條件,則pr的必要不充分條件;③若為真命題,則命題p,q中至多有一個(gè)為真命題;④過(guò)點(diǎn)的直線(xiàn)和圓相切的充要條件是直線(xiàn)斜率為.其中為真命題的有(

A.①②B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面,、均為等邊三角形,的中點(diǎn),點(diǎn).

1)求證:平面平面;

2)若點(diǎn)是線(xiàn)段的中點(diǎn),求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上任意一點(diǎn),的最小值為,且該橢圓的離心率為.

1)求橢圓的方程;

2)若是橢圓上不同的兩點(diǎn),且,若,試問(wèn)直線(xiàn)是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與雙曲線(xiàn)有相同的焦點(diǎn),點(diǎn)是曲線(xiàn)的一個(gè)公共點(diǎn),,分別是的離心率,若,則的最小值為( )

A. B. 4 C. D. 9

查看答案和解析>>

同步練習(xí)冊(cè)答案