【題目】始于2007年初的美國次貸危機,至2008年中期,已經(jīng)演變?yōu)槿蚪鹑谖C.受此影響,國際原油價格從2008年7月每桶最高的147美元開始大幅下跌,9月跌至每桶97美元.你能求出國際原油價格7月到9月之間平均每月下降的百分比嗎?若按此計算,到什么時間跌至谷底(即每桶34美元)?
【答案】18.8%,2009年2月.
【解析】
設(shè)每月平均下降的百分比為,則每月的價格構(gòu)成了等比數(shù)列,可得,再利用等比數(shù)列求得9月份的值,列出方程即可求解.
設(shè)每月平均下降的百分比為x,則每月的價格構(gòu)成了等比數(shù)列{an},記a1=147(7月份價格),則8月份價格a2=a1(1-x)=147(1-x),
9月份價格a3=a2(1-x)=147(1-x)2.
∴147(1-x)2=97,解得x≈18.8%.
設(shè)an=34,則34=147·(1-18.8%)n-1,解得n=8.
即從2008年7月算起第8個月,也就是2009年2月國際原油價格將跌至34美元每桶.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計本校高三年級每個學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在40分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為6組,得到如下所示頻數(shù)分布表.
分數(shù)段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
(1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點值作代表),從計算結(jié)果看,數(shù)學(xué)成績與性別是否有關(guān);
(2)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認為“數(shù)學(xué)成績與性別有關(guān)”.
優(yōu)分 | 非優(yōu)分 | 合計 | |
男生 | |||
女生 | |||
附表及公式:
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)討論單調(diào)性;
(2)當(dāng)時,函數(shù)的最大值為,求不超過的最大整數(shù) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,四點,,,中恰有兩個點為橢圓的頂點,一個點為橢圓的焦點.
(1)求橢圓的方程;
(2)若斜率為1的直線與橢圓交于不同的兩點,且,求直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由;
(2)求40名工人完成生產(chǎn)任務(wù)所需時間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時間超過和不超過的工人數(shù)填入下面的列聯(lián)表:
超過 | 不超過 | |
第一種生產(chǎn)方式 | ||
第二種生產(chǎn)方式 |
(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異?
附:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,a,b,c分別是角A、B、C的對邊,向量 =(2sinB,2﹣cos2B), =(2sin2( + ),﹣1)且 ⊥ .
(1)求角B的大小;
(2)若a= ,b=1,求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x=3是函數(shù)f(x)=aln(1+x)+x2﹣10x的一個極值點.
(Ⅰ)求a;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若直線y=b與函數(shù)y=f(x)的圖象有3個交點,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義函數(shù)F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),設(shè)函數(shù)f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點之和為( )
A.4
B.6
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com