【題目】已知拋物線C:y2=2px(p>0)的焦點為F,C上一點(3,m)到焦點的距離為5.
(1)求C的方程;
(2)過F作直線l,交C于A、B兩點,若線段AB中點的縱坐標為﹣1,求直線l的方程.

【答案】
(1)解:拋物線C:y2=2px(p>0)的準線方程為 ,

由拋物線的定義可知

解得p=4

∴C的方程為y2=8x.


(2)解:由(1)得拋物線C的方程為y2=8x,焦點F(2,0)

設A,B兩點的坐標分別為A(x1,y1),B(x2,y2),

兩式相減.整理得

∵線段AB中點的縱坐標為﹣1

∴直線l的斜率

直線l的方程為y﹣0=﹣4(x﹣2)即4x+y﹣8=0


【解析】(1)利用拋物線的定義,求出p,即可求C的方程;(2)利用點差法求出直線l的斜率,即可求直線l的方程.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中.
(1)設 = ,求證:△ABC是等腰三角形;
(2)設向量 =(2sinC,﹣ ), =(sin2C,2cos2 ﹣1),且 ,若sinA= ,求sin( ﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[﹣3,﹣2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內(nèi)角,則下列不等式正確的是(
A.f(sinA)>f(sinB)
B.f(cosA)>f(cosB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P是圓F1:(x+1)2+y2=16上任意一點(F1是圓心),點F2與點F1關(guān)于原點對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點.
(1)求點M的軌跡C的方程;
(2)直線l經(jīng)過F2 , 與拋物線y2=4x交于A1 , A2兩點,與C交于B1 , B2兩點.當以B1B2為直徑的圓經(jīng)過F1時,求|A1A2|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,我市某居民小區(qū)擬在邊長為1百米的正方形地塊ABCD上劃出一個三角形地塊APQ種植草坪,兩個三角形地塊PAB與QAD種植花卉,一個三角形地塊CPQ設計成水景噴泉,四周鋪設小路供居民平時休閑散步,點P在邊BC上,點Q在邊CD上,記∠PAB=a.
(1)當∠PAQ= 時,求花卉種植面積S關(guān)于a的函數(shù)表達式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線C上的動點M到定點F(1,0)的距離和它到定直線x=3的距離之比是1:
(1)求曲線C的方程;
(2)過點F(1,0)的直線l與C交于A,B兩點,當△ABO面積為 時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點距地面2米,最高點距地面18米,P是摩天輪輪周上一定點,從P在最低點時開始計時,則14分鐘后P點距地面的高度是米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C: =1,點M與曲線C的焦點不重合,若點M關(guān)于曲線C的兩個焦點的對稱點分別為A,B,M,N是坐標平面內(nèi)的兩點,且線段MN的中點P恰好在雙曲線C上,則|AN﹣BN|=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:x2﹣6x+5≤0,q:x2﹣2x+1﹣m2≤0(m>0).
(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案