函數(shù)y=2cos(
π
3
-ωx)的最小正周期是4π,則ω等于(  )
A、2
B、
1
2
C、±2
D、±
1
2
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:直接利用三角函數(shù)的周期的求法方法求解即可.
解答: 解:函數(shù)y=2cos(
π
3
-ωx)的最小正周期是4π,
所以4π=
|-ω|
,解得ω=±
1
2

故選D.
點評:本題考查三角函數(shù)的周期的求法,基本知識的考查,注意公式的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,值域是{y|y≠0}的是(  )
A、y=x2+2x+3
B、y=3x+6
C、y=
1
x
D、y=loga(2x2-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,Sn是其前n項和,已知a4-a2=4,S2n=100,則a12-a22+a32-a42+…+a2n-12-a2n2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題“面積相等的三角形是全等三角形”,該命題的否定是
 
,該命題的否命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?ABCD中,A(1,1),B(-2,3),C(0,-4),求D點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
20
+
y2
16
=1
,點A是橢圓與y軸的交點,F(xiàn)為橢圓的右焦點,直線l與橢圓交于B,C兩點.
(1)若點M滿足:
AF
=2
FM
,
OM
=
1
2
(
OB
+
OC
)

①求點M的坐標;②求直線l的方程;
(2)設(shè)直線l的方程為y=kx+m,若
AB
AC
=0
,D在BC上,且
AD
BC
=0

①求證:直線l恒過一定點,并求出該定點坐標;②求動點D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
9
+
y2
4
=1中,被點P(2,1)平分的弦所在直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次登島、奪島軍事演習(xí)中,紅軍2000官兵乘軍艦登島,藍軍在登島海域布置魚雷反登島,每搜軍艦在登島過程中被藍軍魚雷擊沉的概率為p(0<p<1),紅軍現(xiàn)有五艘軍艦,每艘軍艦最大乘員500人,躲過魚雷襲擊就能成功登島,登島官兵至少需要1500人,才能擊敗奪島藍軍,成功奪島,紅軍可選用兩種方案運載官兵:
方案甲:使用4艘軍艦.
方案乙:使用5艘軍艦,每艘乘員400人.
(1)如果以登島人數(shù)論成敗,紅軍應(yīng)選擇哪種方案?
(2)如果以奪島論成敗,紅軍應(yīng)選擇哪種方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
px-p
-lnx(p>0).
(1)如果f(x)在[1,+∞)上單調(diào)遞增,求p的取值范圍;
(2)設(shè)an=
2n+1
n
,求證:a1+a2+…+an≥2ln(n+1).

查看答案和解析>>

同步練習(xí)冊答案