對于數(shù)列,把作為新數(shù)列的第一項,把)作為新數(shù)列的第項,數(shù)列稱為數(shù)列的一個生成數(shù)列.例如,數(shù)列的一個生成數(shù)列是.已知數(shù)列為數(shù)列的生成數(shù)列,為數(shù)列的前項和.
(1)寫出的所有可能值;
(2)若生成數(shù)列滿足,求數(shù)列的通項公式;
(3)證明:對于給定的,的所有可能值組成的集合為

(1)(2)(3)詳見解析.

解析試題分析:(1)列舉出數(shù)列所有可能情況,共種,分別計算和值為,本題目的初步感觀生成數(shù)列(2)已知和項解析式,則可利用求通項. 當時,,而當且僅當時,才成立.所以(3)本題實際是對(1)的推廣.證明的實質(zhì)是確定集合的個數(shù)及其表示形式.首先集合的個數(shù)最多有種情形,而每一種的值都不一樣,所以個數(shù)為種情形,這是本題的難點,利用同一法證明. 確定集合的表示形式,關(guān)鍵在于說明分子為奇數(shù).由得分子必是奇數(shù),奇數(shù)個數(shù)由范圍確定.
試題解析:解:(1)由已知,,
,
由于,
可能值為.                              3分
(2)∵,
時,,
時,
,,                         5分
的生成數(shù)列,
;;

在以上各種組合中,
當且僅當時,才成立.
.                          8分
(3)共有種情形.
,即,
,分子必是奇數(shù),
滿足條件的奇數(shù)共有個.            10分
設(shè)數(shù)列與數(shù)列為兩個生成數(shù)列,數(shù)列的前項和為,數(shù)列的前項和為,從第二項開始比較兩個數(shù)列,設(shè)第一個不相等的項為第項.
由于,不妨設(shè)


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,對總有成立,
(1)計算的值;
(2)根據(jù)(1)的結(jié)果猜想數(shù)列的通項,并用數(shù)學歸納法證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的通項公式分別為,.將中的公共項按照從小到大的順序排列構(gòu)成一個新數(shù)列記為.
(1)試寫出,,的值,并由此歸納數(shù)列的通項公式; 
(2)證明你在(1)所猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè),用表示時的函數(shù)值中整數(shù)值的個數(shù).
(1)求的表達式.
(2)設(shè),求.
(3)設(shè),若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設(shè)數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出前6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設(shè)a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項和S2011.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足:,且,
(1)求通項公式;
(2)求數(shù)列的前n項的和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}中,a1=1,前n項和Sn=an.
(1)求a2,a3;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若無窮數(shù)列滿足:①對任意;②存在常數(shù),對任意,則稱數(shù)列為“數(shù)列”.
(Ⅰ)若數(shù)列的通項為,證明:數(shù)列為“數(shù)列”;
(Ⅱ)若數(shù)列的各項均為正整數(shù),且數(shù)列為“數(shù)列”,證明:對任意,;
(Ⅲ)若數(shù)列的各項均為正整數(shù),且數(shù)列為“數(shù)列”,證明:存在,數(shù)列為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的通項公式為,數(shù)列的前項和為,且滿足
(1)求的通項公式;
(2)在中是否存在使得中的項,若存在,請寫出滿足題意的其中一項;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案