如圖,圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P且傾斜角為α的弦。
(1)當(dāng)α=135°時,求|AB|;
(2)當(dāng)弦AB被點P平分時,寫出直線AB的方程。
(3)求過點P的弦的中點的軌跡方程。
解:(1)過點O做OG⊥AB于G,連結(jié)OA,
當(dāng)α=135°時,直線AB的斜率為-1,
故直線AB的方程x+y-1=0,
∴OG=,
∵r=,
。
(2)當(dāng)弦AB被P平分時,OP⊥AB,此時kOP=,
∴AB的點斜式方程為,即。
(3)設(shè)AB的中點為M(x,y),AB的斜率為k,OM⊥AB,
,
消去k,得
當(dāng)AB的斜率k不存在時也成立,
故過點P的弦的中點的軌跡方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P且傾斜角為α的弦,
(1)當(dāng)α=135°時,求|AB|
(2)當(dāng)弦AB被點P平分時,寫出直線AB的方程.
(3)求過點P的弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓x2+y2=4與y軸的正半軸交于點B,P是圓上的動點,P點在x軸上的投影是D,點M滿足
DM
=
1
2
DP

(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形.
(2)過點B的直線l與M點的軌跡C交于不同的兩點E、F,若
BF
=2
BE
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過圓x2+y2=4上任意一點Px軸的垂線,垂足為Q,求線段PQ中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年安徽省宣城市郎溪中學(xué)高一(下)期中數(shù)學(xué)試卷(必修2)(解析版) 題型:解答題

如圖,圓x2+y2=8內(nèi)有一點P(-1,2),AB為過點P且傾斜角為α的弦,
(1)當(dāng)α=135°時,求|AB|
(2)當(dāng)弦AB被點P平分時,寫出直線AB的方程.
(3)求過點P的弦的中點的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案