【題目】在數(shù)列{an}及{bn}中,an+1=an+bn+ =1.設(shè) ,則數(shù)列{cn}的前n項和為( 。
A.
B.2n+2﹣4
C.3×2n+2n﹣4
D.
【答案】B
【解析】解:an+1=an+bn+ =1.
an+1+bn+1=2(an+bn),
令dn=an+bn,d1=1+1=2
則 .
∴ .即an+bn=2n
(an+1bn+1)=(an+bn)2﹣(an2+bn2)=2anbn
令anbn=en,e1=1.
可得: .
∴anbn=2n﹣1.
則cn= 2n=2n+1.
∴cn是首項c1=4,公比q=2的數(shù)列.
∴數(shù)列{cn}的前n項和 =2n+2﹣4
所以答案是:B.
【考點精析】利用數(shù)列的前n項和對題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=CC1=2,AC=2 ,M是AC的中點,則異面直線CB1與C1M所成角的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點A(0,1),B(2,﹣1),點C在雙曲線M: ﹣y2=1上,則使△ABC的面積為3的點C的個數(shù)為( 。
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=aln(x+1),g(x)=ex﹣1,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(Ⅰ)當(dāng)x≥0時,f(x)≤g(x)恒成立,求a的取值范圍;
(Ⅱ)求證: < < (參考數(shù)據(jù):ln1.1≈0.095).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C: =1(a>b>0)的離心率為 ,A,B分別為橢圓C的左、右頂點,F(xiàn)為右焦點.直線y=6x與C的交點到y(tǒng)軸的距離為 ,過點B作x軸的垂線l,D為l 上異于點B的一點,以BD為直徑作圓E.
(1)求C 的方程;
(2)若直線AD與C的另一個交點為P,證明PF與圓E相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a>1,函數(shù)f(x)=(1+x2)ex﹣a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明f(x)在(﹣∞,+∞)上僅有一個零點;
(3)若曲線y=f(x)在點P處的切線與x軸平行,且在點M(m,n)處的切線與直線OP平行,(O是坐標(biāo)原點),證明:m≤ ﹣1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飲料生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2017年度進(jìn)行一系列促銷活動,經(jīng)過市場調(diào)查和測算,飲料的年銷售量x萬件與年促銷費t萬元間滿足 .已知2017年生產(chǎn)飲料的設(shè)備折舊,維修等固定費用為3萬元,每生產(chǎn)1萬件飲料需再投入32萬元的生產(chǎn)費用,若將每件飲料的售價定為其生產(chǎn)成本的150%與平均每件促銷費的一半之和,則該年生產(chǎn)的飲料正好能銷售完.
(1)將2017年的利潤y(萬元)表示為促銷費t(萬元)的函數(shù);
(2)該企業(yè)2017年的促銷費投入多少萬元時,企業(yè)的年利潤最大?
(注:利潤=銷售收入-生產(chǎn)成本-促銷費,生產(chǎn)成本=固定費用+生產(chǎn)費用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:已知實數(shù)a,b,則ab>0是a>0且b>0的必要不充分條件,命題q:在曲線y=cos x上存在斜率為 的切線,則下列判斷正確的是( )
A.p是假命題
B.q是真命題
C.p∧( )是真命題
D.( )∧q是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:“存在x0∈[1,+∞),使得(log23) ≥1”,則下列說法正確的是( )
A.p是假命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命題;¬p“不存在x0∈[1,+∞),使得(log23) <1”
C.p是真命題;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命題;¬p“任意x∈(﹣∞,1),都有(log23)x<1”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com