精英家教網 > 高中數學 > 題目詳情
F1、F2是雙曲線C:x2=1的兩個焦點,P是C上一點,且△F1PF2是等腰直角三角形,則雙曲線C的離心率為
A.1+B.2+
C.3-D.3+
A
解:由△PF1F2為等腰直角三角形,又|PF1|≠|PF2|,
故必有|F1F2|=|PF2|,即2c=,從而得c2-2ac-a2=0,即e2-2e-1=0,
解之得e=1±
∵e>1,∴e=1+
故選:A.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知點為圓上的動點,且不在軸上,軸,垂足為,線段中點的軌跡為曲線,過定點任作一條與軸不垂直的直線,它與曲線交于、兩點。
(I)求曲線的方程;
(II)試證明:在軸上存在定點,使得總能被軸平分

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若雙曲線的漸近線方程為,則其離心率是為              .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知動點與平面上兩定點、連線的斜率的積為定
.
(1)求動點的軌跡方程;(2)設直線與曲線交于、兩點,當||=時,求直線的方程. 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直角坐標系上取兩個定點,再取兩個動點,且.
(Ⅰ)求直線交點的軌跡的方程;
(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓上的任意一點到它兩個焦點的距離之和為,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同兩點,且線段的中點不在圓內,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知圓C方程:(x-1)2 + y 2=9,垂直于x軸的直線L與圓C相切于N點(N在圓心C的右側),平面上有一動點P,若PQ⊥L,垂足為Q,且;

(1)求點P的軌跡方程; 
(2)已知D為點P的軌跡曲線上第一象限弧上一點,O為原點,A、B分別為點P的軌跡曲線與軸的正半軸的交點,求四邊形OADB的最大面積及D點坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知A,B的坐標分別是,直線AM,BM相交于點M,且它們的斜率之和是2,則點M的軌跡方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知F1、F2是雙曲線的左右焦點,過F1的直線與左支交于A、B兩點,若,則該雙曲線的離心率是為(   )
A.            B.        C.        D.

查看答案和解析>>

同步練習冊答案