在△ABC中,設(shè)角A,B所對(duì)邊分別為a,b,若
sinA
a
=
cosB
b
,則角B=
45°
45°
分析:由題意利用正弦定理,直接求出B的三角方程,求出B即可.
解答:解:△ABC中,設(shè)角A,B所對(duì)邊分別為a,b,
sinA
a
=
cosB
b
,
由正弦定理可知:
sinA
sinA
=
cosB
sinB
,
所以sinB=cosB,B=45°.
故答案為:45°.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查正弦定理的應(yīng)用,可以通過(guò)邊長(zhǎng)來(lái)求出B的值,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,設(shè)角A、B、C的對(duì)邊分別為a、b、c,且
cosC
cosB
=
3a-c
b

(1)求sinB的值;
(2)若b=4
2
,且a=c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c,已知b2-bc-2c2=0,a=
6
cosA=
7
8
,則b=( 。
A、2B、4C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)在△ABC中,設(shè)角A、B、C所對(duì)的邊分別是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,則∠C=
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,設(shè)角A、B、C的對(duì)邊分別為a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.
(I)求角C的大;
(Ⅱ)若c=
3
,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,設(shè)角A、B、C的對(duì)邊分別為a、b、c,且
a
cosA
=
b
cosB
,則△ABC一定是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案