下列四個命題中,正確命題的個數(shù)是(    )個
① 若平面平面,直線平面,則;
② 若平面平面,且平面平面,則;
③平面平面,且,點,,若直線,則;
④直線為異面直線,且平面平面,若,則.
A.B.C.D.
B

試題分析:A答案:如果加入條件,則;
B答案:例如墻角的三個面,則
C答案:如果加入條件,則
D答案:從向量角度看,分別是的法向量,顯然,即.
所以只有D正確.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在斜三棱柱中,側(cè)面,,底面是邊長為的正三角形,其重心為點,是線段上一點,且

(1)求證:側(cè)面;
(2)求平面與底面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱柱中,側(cè)面為菱形,.

(Ⅰ)證明:;
(Ⅱ)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是平行四邊形,,分別是棱的中點.
(1)證明平面;
(2)若二面角P-AD-B為,
①證明:平面PBC⊥平面ABCD
②求直線EF與平面PBC所成角的正弦值.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,,為圓柱的母線,是底面圓的直徑,,分別是,的中點,
(1)證明:
(2)證明:;
(3)假設(shè)這是個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果魚游到四棱錐 內(nèi)會有被捕的危險,求魚被捕的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知長方形中,, ,的中點.將沿折起,使得平面平面
(1)求證:; 
(2)若點是線段的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知三棱柱的側(cè)棱與底面垂直,且,
,,點、分別為、、的中點.
(1)求證:平面
(2)求證:;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,
cos〈,〉=.
(1)建立適當?shù)目臻g坐標系,寫出點E的坐標;
(2)在平面PAD內(nèi)求一點F,使EF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)m,n是兩條不同直線,α,β是兩個不同的平面,下列命題正確的是( 。
A.m∥α,n∥β且α∥β,則m∥n
B.m⊥α,n⊥β且α⊥β,則m⊥n
C.m⊥α,n?β,m⊥n,則α⊥β
D.m?α,n?α,m∥β,n∥β,則α∥β

查看答案和解析>>

同步練習冊答案