【題目】在直角坐標系中,拋物線的方程為,以點為極點,軸正半軸為極軸建立極坐標系,直線 的極坐標方程為,與軸交于點.
(1)求直線的直角坐標方程,點的極坐標;
(2)設與 交于兩點,求.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當x≥0時,f(x)≤h(x)恒成立,求a的取值范圍;
(Ⅱ)當x<0時,研究函數(shù)F(x)=h(x)﹣g(x)的零點個數(shù);
(Ⅲ)求證:(參考數(shù)據(jù):ln1.1≈0.0953).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左焦點左頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知,是橢圓上的兩點,是橢圓上位于直線兩側的動點.若,試問直線的斜率是否為定值?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國改革開放三十年”演講比賽活動.
(1)設所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率;
(3)設“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B)和P(B|A).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是R上的奇函數(shù),且當x>0時,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)畫出f(x)的圖像,并指出f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心為原點,其半徑與橢圓的左焦點和上頂點的連線線段長度相等.
(1)求圓的標準方程;
(2)過橢圓右焦點的動直線(其斜率不為0)交圓于兩點,試探究在軸正半軸上是否存在定點,使得直線與的斜率之和為0?若存在,求出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標系,已知直線的極坐標方程是,圓的參數(shù)方程為(為參數(shù),).
(1)若直線與圓有公共點,求實數(shù)的取值范圍;
(2)當時,過點且與直線平行的直線交圓于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】退休年齡延遲是平均預期壽命延長和人口老齡化背景下的一種趨勢.某機構為了解某城市市民的年齡構成,按的比例從年齡在20~80歲(含20歲和80歲)之間的市民中隨機抽取600人進行調(diào)查,并將年齡按進行分組,繪制成頻率分布直方圖,如圖所示.規(guī)定年齡在歲的人為“青年人”,歲的人為“中年人”, 歲的人為“老年人”.
(Ⅰ)根據(jù)頻率分布直方圖估計該城市60歲以上(含60歲)的人數(shù),若每一組中的數(shù)據(jù)用該組區(qū)間的中點值來代表,試估算所調(diào)查的600人的平均年齡;
(Ⅱ)將上述人口分布的頻率視為該城市年齡在20~80歲的人口分布的概率,從該城市年齡在20~80歲的市民中隨機抽取3人,記抽到“老年人”的人數(shù)為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①已知,“且”是“”的充分條件;
②已知平面向量,“”是“”的必要不充分條件;
③已知,“”是“”的充分不必要條件;
④命題:“,使且”的否定為:“,都有且”.其中正確命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com