20.設向量$\overrightarrow{a}$=(m,1),$\overrightarrow$=(2,-3),若滿足$\overrightarrow{a}⊥\overrightarrow$,則m=( 。
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

分析 根據(jù)兩向量垂直數(shù)量積為0,列出方程求出解即可.

解答 解:向量$\overrightarrow{a}$=(m,1),$\overrightarrow$=(2,-3),
若$\overrightarrow{a}⊥\overrightarrow$,則$\overrightarrow{a}$•$\overrightarrow$=2m-3=0
解得m=$\frac{3}{2}$.
故選:C.

點評 本題考查了平面向量的數(shù)量積問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知等差數(shù)列{an}滿足a3=2,前3項和S3=$\frac{9}{2}$.
(Ⅰ)求{an}的通項公式.
(Ⅱ)設等比數(shù)列{bn}滿足b1=a1,b4=a15,求{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知m、n∈R+,f(x)=|x+m|+|2x-n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+$\frac{{n}^{2}}{4}$)的最小值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知矩陣A=$[\begin{array}{l}{1}&\\{-1}&{a}\end{array}]$(a,b∈R),若點P(1,1)在矩陣A對應的變換作用下得到點P′(-1,1).
(1)求實數(shù)a,b的值;
(2)求矩陣A的特征值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{20}$,$\overrightarrow{a}$•$\overrightarrow$=4,則|$\overrightarrow{a}$-$\overrightarrow$|=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.四棱錐S-ABCD中SA⊥底面ABCD,ABCD是正方形,且SA=AB,若點E是SA的中點.
(1)求證:SC∥平面EBD;
(2)求二面角S-CD-B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x,m∈R.
(Ⅰ)當m=$\frac{1}{2}$時,求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)若關于x的不等式f(x)+g(x)≤mx-1恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)g(x)=a-x2($\frac{1}{e}$≤x≤e,e為自然對數(shù)的底數(shù)),若函數(shù)y=g(x)的圖象與函數(shù)h(x)=2lnx-2的圖象存在關于x軸對稱的點,則實數(shù)a的最大值為( 。
A.1B.2C.e2D.2e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知長方形的對角線長為1,求長方體的最大的表面積,并求出這時長方體的各棱長.

查看答案和解析>>

同步練習冊答案