【題目】已知函數(shù),設(shè)關(guān)于的方程有個不同的實(shí)數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
【答案】A
【解析】f′(x)=(x﹣1)(x+3)ex,所以f(x)在(﹣∞,﹣3)和(1,+∞)上單調(diào)遞增,(﹣3,1)上單調(diào)遞減,又當(dāng)x→﹣∞時f(x)→0,x→+∞時f(x)→+∞,故f(x)的圖象大致為:
令f(x)=t,則方程必有兩個實(shí)根t1,t2(t1<t2)且,
當(dāng)t1=﹣2e時恰有,此時f(x)=t1有1個根,f(x)=t2有2個根;
當(dāng)t1<﹣2e時必有,此時f(x)=t1無根,f(x)=t2有3個根;
當(dāng)﹣2e<t1<0時必有,此時f(x)=t1有2個根,f(x)=t2有1個根;
綜上,對任意m∈R,方程均有3個根.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左焦點(diǎn)為,上頂點(diǎn)為,長軸長為,為直線:上的動點(diǎn),,.當(dāng)時,與重合.
(1)若橢圓的方程;
(2)若直線交橢圓于,兩點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的所有棱長均,為棱(不包括端點(diǎn))上一動點(diǎn),是的中點(diǎn).
(Ⅰ)若,求的長;
(Ⅱ)當(dāng)在棱(不包括端點(diǎn))上運(yùn)動時,求平面與平面的夾角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程是(是參數(shù)),圓的極坐標(biāo)方程為.
(1)求圓心的直角坐標(biāo);
(2)由直線上的點(diǎn)向圓引切線,并切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)的坐標(biāo)為,直線與曲線交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程;
(2)設(shè)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅?zhǔn)俏覈R梁時代的數(shù)學(xué)家,是祖沖之的兒子,他提出了一條原理:“冪勢既同,則積不容易.”這里的“冪”指水平截面的面積.“勢”指高,這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。于是可把半徑相等的半球(底面在下)和圓柱(圓柱高等于半徑)放在同一水平面上,圓柱里再放一個半徑和高都與圓柱相等的圓錐(錐尖朝下),考察圓柱里被圓錐截剩的立體,這樣在同一高度用平行平面截得的半球截面和圓柱中剩余立體截得的截面面積相等,因此半球的體積等于圓柱中剩余立體的體積.設(shè)由橢圓所圍成的平面圖形繞軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(如圖,稱為“橢球體”),請類比以上所介紹的應(yīng)用祖暅原理求球體體積的做法求這個橢球體的體積.其體積等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018江西撫州市高三八校聯(lián)考】如圖,在三棱錐中, , , , ,平面平面, 為的中點(diǎn).
(I)求證: 平面;
(II)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com