(本小題滿分12分)等差數(shù)列的前項和為
⑴求數(shù)列的通項與前項和;⑵設,求證:數(shù)列中任意不同的三項都不可能成為等比數(shù)列.
(Ⅰ)(Ⅱ)數(shù)列中任意不同的三項都不可能成等比數(shù)列.
(Ⅰ)由已知得,∴,(3分)
.                (5分)
(Ⅱ)由(Ⅰ)得.                 (6分)
假設數(shù)列中存在三項互不相等)成等比數(shù)列,
.即
                   (8分)
,∴ ∴,得,
.與矛盾.                           (10分)
所以數(shù)列中任意不同的三項都不可能成等比數(shù)列.   (12分)
評析:(1)求解等差數(shù)列與等比數(shù)列的有關問題,定義、公式和性質(zhì)是主要工具,要注意抓住基本量───首項和公差(公比),方程思想、化歸思想和運算能力是考查的重點;
(2)正面求解,直接證明難以突破時,可以考慮從反面入手,運用正難則反的思想來處理,反證法就是從反面入手的一種重要的推理方法,一般地,以否定的形式出現(xiàn)的數(shù)學命題,我們常用反證法來實現(xiàn)證明。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知數(shù)列的前項和為,通項公式為.(Ⅰ)計算的值;(Ⅱ)比較與1的大小,并用數(shù)學歸納法證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設等比數(shù)列的公比為,前項和為,若成等差數(shù)列,則的值為       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)某企業(yè)為了適應市場需求,計劃從2010年元月起,在每月固定投資5萬元的基礎上,元月份追加投資6萬元,以后每月的追加投資額均為之前幾個月投資額總和的20%,但每月追加部分最高限額為10萬元. 記第n個月的投資額為
(1)求n的關系式;
(2)預計2010年全年共需投資多少萬元?(精確到0.01,參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)設是公差不為零的等差數(shù)列,為其前項和,滿足。(1)求數(shù)列的通項公式及前項和;(2)試求所有的正整數(shù),使得為數(shù)列中的項。   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

己知各項均為正數(shù)的數(shù)列{an}滿足an+12+an+1an-2an2=0(n∈N*),且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式an;
(2)若bn=anlog
1
2
an,Sn=b1+b2+…+bn,求Sn+n•2n+1>50成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

記等差數(shù)列的前項和為,若,,則該數(shù)列的公差(   )
A.2B.3C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于實數(shù),用表示不超過的最大整數(shù),如,.若為正整數(shù),,為數(shù)列的前項和,則       、__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列﹛﹜為等差數(shù)列,且,則的值為
A.B.C.D.

查看答案和解析>>

同步練習冊答案