(本小題滿分13分)已知的圖像在點(diǎn)
的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:

解:(Ⅰ),根據(jù)題意,即…3分
(Ⅱ)由(Ⅰ)知,,

,=
①當(dāng)時(shí), ,
,則,減函數(shù),所以,即
上恒不成立.
時(shí),,當(dāng)時(shí),增函數(shù),又,所

綜上所述,所求的取值范圍是       ……8分
(Ⅲ)有(Ⅱ)知當(dāng)時(shí),上恒成立.取
,,

所以
上式中n=1,2,3,…,n,然后n個(gè)不等式相加得到
……13分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題14分)
線的斜率是-5。
(Ⅰ)求實(shí)數(shù)b、c的值;
(Ⅱ)求f(x)在區(qū)間[-1,2]上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù)a,曲線y=f(x)上是否存在兩點(diǎn)P、Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.已知函數(shù),其中
(1)設(shè)函數(shù),若在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.
(2)設(shè)函數(shù)是否存在,對(duì)任意給定的非零實(shí)數(shù),存在唯一的非零
實(shí)數(shù)使得成立,若存在,求的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
(理科)已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)已知函數(shù)的定義域?yàn)閇],值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1d/c/crua.gif" style="vertical-align:middle;" />,
],并且,上為減函數(shù).
(1)求的取值范圍;     
(2)求證:
(3)若函數(shù),,的最大值為M,
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分15分)已知函數(shù),
(Ⅰ)判斷函數(shù)的奇偶性;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若關(guān)于的方有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)為奇函數(shù),且,其中
.
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知函數(shù)是連續(xù)函數(shù),則實(shí)數(shù)的值是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案