如圖,在正四棱錐P-ABCD中,AB=PA=
2

(1)求直線PA與底面ABCD所成角的大小;
(2)求點A到平面PBC的距離.
分析:(1)先作出底面ABCD的垂線,可知AO為斜線PA在底面的射影,線面角的定義可知∠PAO為斜線與底面所成的角,然后再直角三角形內求其角的度數(shù)即可;
(2)利用棱錐等體積求高的辦法,就可以求出點A到面PBC的距離.
解答:解:由題意知
連接AC、BD相交于O點,再連接PO
(1)∵四棱錐P-ABCD為正四棱錐
∴OP⊥面ABCD
∴AO為斜線PA在底面ABCD上的射影
    即∠PAO為斜線PA與底面ABCD所成的角
 又∵PA=
2
,OP=OA=1
∴△POA為等腰直角三角形
∴∠PAO=45°
故直線PA與底面ABCD所成角的大小為45°.
(2)設點A到平面PBC的距離為h
  根據(jù)等體積求高法:VA-PBC=VP-ABC
1
3
hS△PBC=
1
3
|OP|S△ABC

∴h=
2
3
3

故點A到平面PBC的距離
2
3
3
點評:本題主要考查線面角的求法,及利用棱錐等體積求高法,求點到面的距離.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正四棱錐P-ABCD中,PA=AB=a,點E在棱PC上.
(1)問點E在何處時,PA∥平面EBD,并加以證明;
(2)求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

17、如圖,在正四棱錐P-ABCD中,點M為棱AB的中點,點N為棱PC上的點.
(1)若PN=NC,求證:MN∥平面PAD;
(2)試寫出(1)的逆命題,并判斷其真假.若為真,請證明;若為假,請舉反例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱錐P-ABCD中,若
S△PBD
S△PAD
=
6
2
,則二面角P-BC-A等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宿遷一模)如圖,在正四棱錐P-ABCD中,已知PA=AB=
2
,點M為PA中點,求直線BM與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正四棱錐P-ABCD中,∠APC=60°,則二面角A-PB-C的平面角的余弦值為(  )

查看答案和解析>>

同步練習冊答案