【題目】已知函數(shù)fn(x)= (n∈N*),關(guān)于此函數(shù)的說法正確的序號(hào)是
①fn(x)(n∈N*)為周期函數(shù);②fn(x)(n∈N*)有對(duì)稱軸;③( ,0)為fn(x)(n∈N*)的對(duì)稱中心:④|fn(x)|≤n(n∈N*).

【答案】①②④
【解析】解:∵函數(shù)fn(x)= (n∈N*),
∴①fn(x+2π)=fn(x)(n∈N*),fn(x為周期函數(shù),正確;
②fn(﹣x)= = ,fn(x)= (n∈N*)是偶函數(shù),∴fn(x)= (n∈N*)有對(duì)稱軸,正確;
③n為偶數(shù)時(shí),fn )= =0,∴( ,0)為fn(x)(n∈N*)的對(duì)稱中心,不正確;
④∵|sinnx|≤|nsinx|,∴|fn(x)|≤n(n∈N*),正確.
所以答案是:①②④.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C: + =1(a>b>0)的離心率為 ,AB為橢圓的一條弦(不經(jīng)過原點(diǎn)),直線y=kx(k>0)經(jīng)過弦AB的中點(diǎn),與橢圓C交于P,Q兩點(diǎn),設(shè)直線AB的斜率為k1

(1)若點(diǎn)Q的坐標(biāo)為(1, ),求橢圓C的方程;
(2)求證:k1k為定值;
(3)過P點(diǎn)作x軸的垂線,垂足為R,若直線AB和直線QR傾斜角互補(bǔ).若△PQR的面積為2 ,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中, ,對(duì)于任意,都有, ,設(shè),記使得成立的的最大值為

)設(shè)數(shù)列 , , ,寫出, 的值.

)若為等比例數(shù)列,且,求的值.

)若為等差數(shù)列,求出所有可能的數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x-3)2+(y-4)2=1,設(shè)點(diǎn)P是圓C上的動(dòng)點(diǎn).記d=|PB|2+|PA|2,其中A(0,1),B(0,-1),則d的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銳角三角形中, , ,則面積的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查“五一”小長(zhǎng)假出游選擇“有水的地方”是否與性別有關(guān),現(xiàn)從該市“五一”出游旅客中隨機(jī)抽取500人進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人)

選擇“有水的地方”

不選擇“有水的地方”

合計(jì)

90

110

200

210

90

300

合計(jì)

300

200

500

(Ⅰ)據(jù)此樣本,有多大的把握認(rèn)為選擇“有水的地方”與性別有關(guān);
(Ⅱ)若以樣本中各事件的頻率作為概率估計(jì)全市“五一”所有出游旅客情況,現(xiàn)從該市的全體出游旅客(人數(shù)眾多)中隨機(jī)抽取3人,設(shè)3人中選擇“有水的地方”的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的數(shù)學(xué)期望和方差.
附臨界值表及參考公式:

P(K2≥k0

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.635

7.879

10.828

,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|-|x-1|.
(Ⅰ)當(dāng)a=-2時(shí),求不等式 的解集;
(Ⅱ)若f(x)≥2有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=2時(shí),求證:對(duì)于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當(dāng)x∈(﹣1,x0)時(shí),恒有f(x)>g(x)成立,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第 個(gè)圖形包含 個(gè)小正方形.

(Ⅰ)求出 ;
(Ⅱ)利用合情推理的“歸納推理思想”歸納出 的關(guān)系式,并根據(jù)你得到的關(guān)系式求 的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案