在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應(yīng)的參數(shù),射線與曲線交于點
(I)求曲線的方程;
(II)若點,在曲線上,求的值.

(I)曲線的方程為,或.
(II)

解析試題分析:(I)將及對應(yīng)的參數(shù),代入,
,即,
所以曲線的方程為為參數(shù)),或.
設(shè)圓的半徑為,由題意,圓的方程為,(或).
將點代入, 得,即.
(或由,得,代入,得),
所以曲線的方程為,或.
(II)因為點, 在在曲線上,
所以,,
所以
考點:本題主要考查簡單曲線的極坐標(biāo)方程,直角坐標(biāo)與極坐標(biāo)的互化,參數(shù)方程與普通方程的互化。
點評:中檔題,此類問題往往不難,解的思路比較明確。(3)是恒等式證明問題,利用點在曲線上,得到,,從中解出,,利用三角函數(shù)“平方關(guān)系”,達(dá)到證明目的。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以該直角坐標(biāo)系的原點為極點,軸的正半軸為極軸的極坐標(biāo)系下,曲線的方程為.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線和曲線的交點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,在曲線上求一點,使它到直線的距離最小,并求出該點坐標(biāo)和最小距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知曲線,將上的所有點的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的、2倍后得到曲線. 以平面直角坐標(biāo)系xOy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.
(1)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(2)在曲線上求一點P,使點P到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C1的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為,曲線C1,C2相交于A,B兩點
(I)把曲線C1,C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(II)求弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點x軸的正半軸為極軸建立極坐標(biāo)系, 曲線C1的極坐標(biāo)方程為:
(I)求曲線C1的普通方程;
(II)曲線C2的方程為,設(shè)P、Q分別為曲線C1與曲線C2上的任意一點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系中,直線l的參數(shù)方程為:在以O(shè)為極點,以x 軸的正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為:
(Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線。
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)若把曲線上各點的坐標(biāo)經(jīng)過伸縮變換后得到曲線,求曲線上任意一點到兩坐標(biāo)軸距離之積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,是圓的內(nèi)接三角行,的平分線交圓于點D,交BC于E,過點B的圓的切線與AD的延長線交于點F,在上述條件下,給出下列四個結(jié)論:①BD平分;②;③;④.則所有正確結(jié)論的序號是(   )

A.①② B.③④ C.①②③ D.①②④

查看答案和解析>>

同步練習(xí)冊答案