對于函數(shù)f(x),若在其定義域內(nèi)存在兩個(gè)實(shí)數(shù)a,b(a<b),使當(dāng)x∈[a,b]時(shí),f(x)的值域也是[a,b],則稱函數(shù)f(x)為“布林函數(shù)”,區(qū)間[a,b]稱為函數(shù)f(x)的“等域區(qū)間”.

(1)布林函數(shù)的等域區(qū)間是         .

(2)若函數(shù)是布林函數(shù),則實(shí)數(shù)k的取值范圍是           .

 

【答案】

(1)[0,1];(2).

【解析】

試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122809405448597336/SYS201312280941416265850092_DA.files/image002.png">是增函數(shù),則當(dāng)x∈[a,b]時(shí),f(x)∈[f(a),f(b)].

令f(a)=a,且f(b)=b,即,且,則a=0,b=1.

故布林函數(shù)的等域區(qū)間是[0,1].

(2)

因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122809405448597336/SYS201312280941416265850092_DA.files/image006.png">是增函數(shù),若是布林函數(shù),則

存在實(shí)數(shù)a,b(-2≤a<b),使,即.所以a,b為方程的兩個(gè)實(shí)數(shù)根,從而方程有兩個(gè)不等實(shí)根.

,則.當(dāng)時(shí),;當(dāng)時(shí),.

由圖可知,當(dāng)時(shí),直線與曲線有兩個(gè)不同交點(diǎn),即方程

有兩個(gè)不等實(shí)根,故實(shí)數(shù)k的取值范圍是.

考點(diǎn):新概念的理解、方程的根與函數(shù)的圖像

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模理) (本小題滿分14分)對于函數(shù)f(x),若存在,使成立,則稱x0f(x)的不動(dòng)點(diǎn). 如果函數(shù)有且僅有兩個(gè)不動(dòng)點(diǎn)0,2,且

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知各項(xiàng)不為零且不為1的數(shù)列{an}滿足,求證:;

(3)設(shè)為數(shù)列{bn}的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

       對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動(dòng)點(diǎn)  已知函數(shù)f(x)=ax2+(b+1)x+(b–1)(a≠0)

(1)若a=1,b=–2時(shí),求f(x)的不動(dòng)點(diǎn);

(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖像上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B關(guān)于直線y=kx+對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動(dòng)點(diǎn).如果函數(shù)

f(x)=ax2bx+1(a>0)有兩個(gè)相異的不動(dòng)點(diǎn)x1,x2

⑴若x1<1<x2,且f(x)的圖象關(guān)于直線xm對稱,求證:<m<1;

⑵若|x1|<2且|x1x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南省華容縣高一第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分6分)對于函數(shù)f(x),若存在x0ÎR,使f(x0)=x0成立,則稱點(diǎn)(x0,x0)為函數(shù)的不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+bx-b有不動(dòng)點(diǎn)(1,1)和(-3,-3),求a、b的值。

 

查看答案和解析>>

同步練習(xí)冊答案