精英家教網 > 高中數學 > 題目詳情

【題目】記U={1,2,…,100},對數列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現設{an}(n∈N*)是公比為3的等比數列,且當T={2,4}時,ST=30.
(1)求數列{an}的通項公式;
(2)對任意正整數k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1
(3)設CU,DU,SC≥SD , 求證:SC+SC∩D≥2SD

【答案】
(1)

解:當 時, ,因此 ,從而


(2)

證明:


(3)

解:設 , ,則 , , ,因此原題就等價于證明

由條件 可知

① 若 ,則 ,所以

② 若 ,由 可知 ,設 中最大元素為 , 中最大元素為 ,

,則由第⑵小題, ,矛盾.

因為 ,所以 ,所以

,即

綜上所述, ,因此SC+SC∩D≥2SD


【解析】(1)根據題意,由ST的定義,分析可得ST=a2+a4=a2+9a2=30,計算可得a2=3,進而可得a1的值,由等比數列通項公式即可得答案;
(2)根據題意,由ST的定義,分析可得ST≤a1+a2+…ak=1+3+32+…+3k1 , 由等比數列的前n項和公式計算可得證明;
(3)設A=C(C∩D),B=D(C∩D),則A∩B=,進而分析可以將原命題轉化為證明SC≥2SB , 分2種情況進行討論:①、若B=,②、若B≠,可以證明得到SA≥2SB , 即可得證明
【考點精析】解答此題的關鍵在于理解等比數列的通項公式(及其變式)的相關知識,掌握通項公式:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地隨著經濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數據進行了處理, 得到下表2

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關于t的線性回歸方程;

(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某射擊運動員射擊1次,命中10環(huán)、9環(huán)、8環(huán)、7環(huán)(假設命中的環(huán)數都為整數)的概率分別為0.20,0.22,0.25,0.28. 計算該運動員在1次射擊中:

(1)至少命中7環(huán)的概率;

(2)命中不足8環(huán)的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】成等差數列的三個正數的和等于15,并且這三個數分別加上2、5、13后成為等比數列{bn}中的b3、b4、b5

)求數列{bn}的通項公式;

)數列{bn}的前n項和為Sn,求證:數列{Sn+}是等比數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,已知知矩形中,點是邊上的點, 相交于點,且,現將沿折起,如圖2,點的位置記為,此時.

(1)求證: ;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).

(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標為(2-p , -p);
②求p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本小題滿分12分ABC中,角A,B,C所對的邊分別為a,b,c已知a=3,cos A,B=A+

1b的值;

2ABC的面積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,其中m>0,若存在實數b,使得關于x的方程f(x)=b有三個不同的根,則m的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知m、n是不同的直線,α、β是不重合的平面,則下列命題正確的是

A. 若α∥β,mα,nβ,則m∥n

B. 若mα,nα,m∥β,n∥β,則α∥β

C. 若aα,bβ,a∥b,則α∥β

D. m、n是兩異面直線,若m∥α,m∥β,且n∥α,n∥β,則α∥β

查看答案和解析>>

同步練習冊答案