【題目】已知向量 =(cosα,sinα), =(﹣2,2).
(1)若 = ,求(sinα+cosα)2的值;
(2)若 ,求sin(π﹣α)sin( )的值.

【答案】
(1)解:∵向量 =(cosα,sinα), =(﹣2,2). =2sinα﹣2cosα= ,

∴解得:sinα﹣cosα= ,兩邊平方,可得:1﹣2sinαcosα= ,解得:2sinαcosα=﹣ ,

∴(sinα+cosα)2=1+2sinαcosα=1﹣ =


(2)解:∵ ,

∴2cosα+2sinα=0,解得:cosα+sinα=0,

∴兩邊平方可得:1+2sinαcosα=0,解得:sinαcosα=﹣ ,

∴sin(π﹣α)sin( )=sinαcosα=﹣


【解析】(1)利用數(shù)量積運算、同角三角函數(shù)基本關(guān)系式可求2sinαcosα的值,即可得解.(2)根據(jù)平面向量的共線定理,同角三角函數(shù)基本關(guān)系式可求sinαcosα,進(jìn)而利用誘導(dǎo)公式化簡所求即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,且2csinB= b.
(1)求角C的大;
(2)若邊c=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數(shù)k的取值范圍.
(3)設(shè) ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底數(shù),e=2.71828…).
(1)證明:函數(shù)f(x)為奇函數(shù);
(2)判斷并證明函數(shù)f(x)的單調(diào)性,再根據(jù)結(jié)論確定f(m2﹣m+1)+f(﹣ )與0的大小關(guān)系;
(3)是否存在實數(shù)k,使得函數(shù)f(x)在定義域[a,b]上的值域為[kea , keb].若存在,求出實數(shù)k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移 個單位后得到函數(shù)g(x)的圖象,若對于滿足|f(x1)﹣g(x2)|=2的x1 , x2 , 有|x1﹣x2|min= ,則f( )的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(m,﹣1), =(
(1)若m=﹣ ,求 的夾角θ;
(2)設(shè) . ①求實數(shù)m的值;
②若存在非零實數(shù)k,t,使得[ +(t2﹣3) ]⊥(﹣k +t ),求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A=[﹣1,3],B=[m,m+6],m∈R.
(1)當(dāng)m=2時,求A∩RB;
(2)若A∪B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓A:(x+2)2+y2=1,圓B:(x﹣2)2+y2=49,動圓P與圓A,圓B均相切.
(1)求動圓圓心P的軌跡方程;
(2)已知點N(2, ),作射線AN,與“P點 軌跡”交于另一點M,求△MNB的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F(0,1),點P在x軸上,點Q在y軸上, =2 ,當(dāng)點P在x軸上運動時,點N的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點F的直線l交曲線C于A,B兩點,且曲線C在A,B兩點處的切線相交于點M,若△MAB的三邊成等差數(shù)列,求此時點M到直線AB的距離.

查看答案和解析>>

同步練習(xí)冊答案