精英家教網 > 高中數學 > 題目詳情
在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4
,A為PD的中點,如圖.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點E在SD上,且
SE
=
1
3
SD
,如圖.
(Ⅰ)求證:SA⊥平面ABCD;
(Ⅱ)求二面角E-AC-D的正切值.
分析:(法一)(1)由題意可知,翻折后的圖中SA⊥AB①,易證BC⊥SA②,由①②根據直線與平面垂直的判定定理可得SA⊥平面ABCD;
(2)(三垂線法)由
SE
=
1
3
SD
考慮在AD上取一點O,使得 
AO
=
1
3
AD
,從而可得EO∥SA,所以EO⊥平面ABCD,過O作OH⊥AC交AC于H,連接EH,∠EHO為二面角E-AC-D的平面角,在Rt△AHO中求解即可
(法二:空間向量法)
(1)同法一
(2)以A為原點建立直角坐標系,易知平面ACD的法向為
AS
=(0,0,2)
,求平面EAC的法向量,代入公式求解即可
解答:解法一:(1)證明:在題平面圖形中,由題意可知,BA⊥PD,ABCD為正方形,
所以在翻折后的圖中,SA⊥AB,SA=2,四邊形ABCD是邊長為2的正方形,
因為SB⊥BC,AB⊥BC,SB∩AB=B
所以BC⊥平面SAB,
又SA?平面SAB,
所以BC⊥SA,
又SA⊥AB,BC∩AB=B
所以SA⊥平面ABCD,
(2)在AD上取一點O,使
AO
=
1
3
AD
,連接EO
因為
SE
=
1
3
SD
,所以EO∥SA
因為SA⊥平面ABCD,
所以EO⊥平面ABCD,
過O作OH⊥AC交AC于H,連接EH,
則AC⊥平面EOH,
所以AC⊥EH.
所以∠EHO為二面角E-AC-D的平面角,EO=
2
3
SA=
4
3

在Rt△AHO中,∠HAO=45°,HO=AO•sin45°=
2
3
×
2
2
=
2
3

tan∠EHO=
EO
OH
=2
2
,
即二面角E-AC-D的正切值為2
2

解法二:(1)同方法一
(2)解:如圖,以A為原點建立直角坐標系,A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),S(0,0,2),E(0,
2
3
4
3

∴平面ACD的法向為
AS
=(0,0,2)

設平面EAC的法向量為
n
=(x,y,z),
AC
=(2,2,0),
AE
=(0,
2
3
,
4
3
)

n
AC
=0
n
AE
=0
,
所以
x+y=0
y+2z=0
,可取
x=2
y=-2
z=1

所以
n
=(2,-2,1).
所以cos<
n
,
AS
>=
n
AS
|
n
||
AS
|
=
2
2×3
=
1
3

所以tan<
n
AS
>=2
2

即二面角E-AC-D的正切值為2
2
點評:本題以平面圖形的翻折為載體,考查空間直線與平面的位置關系:直線與平面平行及直線與平面平行的判定定理的運用,空角角中的二面角的平面角的作法及求解,利用向量的方法求解空間距離及空間角的方法,兩法并舉,注意細細體會.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4,A為PD的中點,如圖1.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點E在SD上,且
SE
=
1
3
SD
,如圖2.
(1)求證:SA⊥平面ABCD;
(2)求二面角E-AC-D的正切值;
(3)在線段BC上是否存在點F,使SF∥平面EAC?若存在,確定F的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中點.現沿AD把平面PAD折起,使得PA⊥AB(如圖乙所示),E、F分別為BC、AB邊的中點.
精英家教網
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求證:平面PAE⊥平面PDE;
(Ⅲ)在PA上找一點G,使得FG∥平面PDE.

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角梯形PBCD中,∠D=∠C=
π
2
,BC=CD=2,PD=4,A為PD的中點,如下左圖.將△PAB沿AB折到△SAB的位置,使SB⊥BC,點E在SD上,且
SE
=
1
3
SD
,M,N分別是線段AB,BC的中點,如右圖.
(1)求證:SA⊥平面ABCD;
(2)求證:平面AEC∥平面SMN.
精英家教網

查看答案和解析>>

科目:高中數學 來源:2011-2012學年四川省高三一診模擬考試理科數學試卷 題型:解答題

在直角梯形PBCD中A為PD的中點,如下左圖。,將沿AB折到的位置,使,點E在SD上,且,如下右圖。

 (1)求證:平面ABCD;(2)求二面角E—AC—D的正切值.

 

查看答案和解析>>

同步練習冊答案