【題目】某校舉行“青少年禁毒”知識(shí)競賽網(wǎng)上答題,高二年級(jí)共有500名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了100名學(xué)生的成績進(jìn)行統(tǒng)計(jì).請(qǐng)你解答下列問題:
(1)根據(jù)下面的頻率分布表和頻率分布直方圖,求出a+d和b+c的值;
(2)若成績不低于90分的學(xué)生就能獲獎(jiǎng),問所有參賽學(xué)生中獲獎(jiǎng)的學(xué)生約為多少人?
分組 | 頻數(shù) | 頻率 |
[60,70) | 10 | 0.1 |
[70,80) | 22 | 0.22 |
[80,90) | a | 0.38 |
[90,100] | 30 | c |
合計(jì) | 100 | d |
【答案】
(1)解:由題意,a=38,d=1,a+d=39,c=0.3,b=0.03,b+c=0.33
(2)解:由(1)知學(xué)生成績?cè)赱90,100]之間的頻率為0.3,
故可估計(jì)所有參賽學(xué)生中能獲獎(jiǎng)的人數(shù)約為500×0.3=150人
【解析】(1)根據(jù)頻率分布表和頻率分布直方圖,求出a+d和b+c的值;(2)由(1)知學(xué)生成績?cè)赱90,100]之間的頻率為0.3,故可估計(jì)所有參賽學(xué)生中能獲獎(jiǎng)的人數(shù).
【考點(diǎn)精析】通過靈活運(yùn)用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,若存在△A1B1C1 , 滿足 = = =1,則稱△A1B1C1是△ABC的一個(gè)“友好”三角形.在滿足下述條件的三角形中,存在“友好”三角形的是:(請(qǐng)寫出符合要求的條件的序號(hào)) ①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°;③A=75°,B=75°,C=30°;④A=75°,B=65°,C=45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+(y﹣1)2=2經(jīng)過橢圓Γ: + =1(a>b>0)的右焦點(diǎn)F和上頂點(diǎn)B.
(1)求橢圓Γ的方程;
(2)過原點(diǎn)O的射線l與橢圓Γ在第一象限的交點(diǎn)為Q,與圓C的交點(diǎn)為P,M為OP的中點(diǎn),求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,b= .
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)F1 , F2分別為橢圓的左、右焦點(diǎn),A、B為橢圓的左、右頂點(diǎn),P為橢圓C上的點(diǎn),求證:以PF2為直徑的圓與以AB為直徑的圓相切;
(3)過左焦點(diǎn)F1作互相垂直的弦MN與GH,判斷MN的中點(diǎn)與GH的中點(diǎn)所在直線l是否過x軸上的定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y滿足約束條件 ,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,求 + 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子裝有六張卡片,上面分別寫著如下六個(gè)函數(shù):
.
(Ⅰ)從中任意拿取張卡片,其中至少有一張卡片上寫著的函數(shù)為奇函數(shù),在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, ).
(1)如果曲線在點(diǎn)處的切線方程為,求, 的值;
(2)若, ,關(guān)于的不等式的整數(shù)解有且只有一個(gè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,a、b、c分別為∠A,∠B,∠C的對(duì)邊,如果a、b、c成等差數(shù)列,∠B=30°,△ABC的面積為 ,那么b等于( )
A.
B.1+
C.
D.2+
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為, .
(Ⅰ)若直線與曲線交于不同的兩點(diǎn), ,當(dāng)時(shí),求的值;
(Ⅱ)當(dāng)時(shí),求曲線關(guān)于直線對(duì)稱的曲線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com