【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形幾何圖形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出,它是一個(gè)自相似的例子,其構(gòu)造方法是:

1)取一個(gè)實(shí)心的等邊三角形(圖1);

2)沿三邊中點(diǎn)的連線,將它分成四個(gè)小三角形;

3)挖去中間的那一個(gè)小三角形(圖2);

4)對(duì)其余三個(gè)小三角形重復(fù)(1)(2)(3)(4)(圖3.

制作出來(lái)的圖形如圖4,….

若圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為(

A.B.C.D.

【答案】C

【解析】

根據(jù)圖形的特點(diǎn),觀察規(guī)律,即可歸納出相鄰圖形之間的面積關(guān)系,由此求出.

設(shè)圖1的面積為,圖2被挖去的面積占圖1面積的,則圖2陰影部分的面積為,同理圖3被挖去的面積占圖2面積的,所以圖3陰影部分的面積為,按此規(guī)律圖1、圖2、圖3…的面積組成等比數(shù)列:,公比為.由已知圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為,

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

求證:對(duì)恒成立;

,若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.

(1)求證:平面;

(2)點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.

(1)求曲線和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)是曲線上一動(dòng)點(diǎn),過(guò)點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直四棱柱中,底面是菱形,,,、分別是線段的中點(diǎn).

1)求證:;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱柱的所有棱長(zhǎng)都為2,且.

1)證明:平面平面;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐SABCD的底面為矩形,SA⊥底面ABCD,點(diǎn)E在線段BC上,以AD為直徑的圓過(guò)點(diǎn) E.若SAAB=3,則△SED面積的最小值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)一帶一路戰(zhàn)略構(gòu)思提出后,某科技企業(yè)為抓住一帶一路帶來(lái)的機(jī)遇,決定開發(fā)生產(chǎn)一款大型電子設(shè)備.生產(chǎn)這種設(shè)備的年固定成本為500萬(wàn)元,每生產(chǎn)x臺(tái),需另投入成本萬(wàn)元,當(dāng)年產(chǎn)量不足60臺(tái)時(shí),萬(wàn)元;當(dāng)年產(chǎn)量不小于60臺(tái)時(shí),萬(wàn)元若每臺(tái)設(shè)備售價(jià)為100萬(wàn)元,通過(guò)市場(chǎng)分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.

求年利潤(rùn)萬(wàn)元關(guān)于年產(chǎn)量臺(tái)的函數(shù)關(guān)系式;

當(dāng)年產(chǎn)量為多少臺(tái)時(shí),該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高爾頓(釘)板是在一塊豎起的木板上釘上一排排互相平行、水平間隔相等的圓柱形鐵釘(如圖),并且每一排釘子數(shù)目都比上一排多一個(gè),一排中各個(gè)釘子恰好對(duì)準(zhǔn)上面一排兩相鄰鐵釘?shù)恼醒?從入口處放入一個(gè)直徑略小于兩顆釘子間隔的小球,當(dāng)小球從兩釘之間的間隙下落時(shí),由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過(guò)兩鐵釘?shù)拈g隙,又碰到下一排鐵釘.如此繼續(xù)下去,在最底層的5個(gè)出口處各放置一個(gè)容器接住小球.

(Ⅰ)理論上,小球落入4號(hào)容器的概率是多少?

(Ⅱ)一數(shù)學(xué)興趣小組取3個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案