【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調(diào)查了500位老年人,結果如下:
是否需要志愿 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
附:
【答案】,有99%的把握認為該地區(qū)的老年人是否需要幫助與性別有關
該地區(qū)老年人是否需要幫助與性別有關,并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時,先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.
【解析】(1)調(diào)查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要幫助的老年人的比例的估算值為
(2)。
由于9.967>6.635,所以有99%的把握認為該地區(qū)的老年人是否需要幫助與性別有關。
(III)由(II)的結論知,該地區(qū)老年人是否需要幫助與性別有關,并且從樣本數(shù)據(jù)能看出該地區(qū)男性老年人與女性老年人中需要幫助的比例有明顯差異,因此在調(diào)查時,先確定該地區(qū)老年人中男、女的比例,再把老年人分成男、女兩層并采用分層抽樣方法比采用簡單隨機抽樣方法更好.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的偶函數(shù),對于x∈R,都有f(x+4)=f(x)+f(2)成立,當x1 , x2∈[0,2]且x1≠x2時,都有 <0,給出下列四個命題:
①f(﹣2)=0;
②直線x=﹣4是函數(shù)y=f(x)的圖象的一條對稱軸;
③函數(shù)y=f(x)在[4,6]上為增函數(shù);
④函數(shù)y=f(x)在(﹣8,6]上有四個零點.
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)若函數(shù)f(x)在區(qū)間(a,a+ )(a>0)上存在極值點,求實數(shù)a的取值范圍;
(2)當x≥1時,不等式f(x)≥ 恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ax2+bx,(a,b∈R).
(1)設a=1,f(x)在x=1處的切線過點(2,6),求b的值;
(2)設b=a2+2,求函數(shù)f(x)在區(qū)間[1,4]上的最大值;
(3)定義:一般的,設函數(shù)g(x)的定義域為D,若存在x0∈D,使g(x0)=x0成立,則稱x0為函數(shù)g(x)的不動點.設a>0,試問當函數(shù)f(x)有兩個不同的不動點時,這兩個不動點能否同時也是函數(shù)f(x)的極值點?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形.點E是棱PC的中點,平面ABE與棱PD交于點F.
(Ⅰ)求證:AB∥EF;
(Ⅱ)若PA=AD,且平面PAD⊥平面ABCD,求證:AF⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】環(huán)保部門對5家造紙廠進行排污檢查,若檢查不合格,則必須整改,整改后經(jīng)復查仍然不合格的,則關閉.設每家造紙廠檢查是否合格是相互獨立的,且每家造紙廠檢查前合格的概率是 ,整改后檢查合格的概率是 ,求:
(Ⅰ)恰好有兩家造紙廠必須整改的概率;
(Ⅱ)至少要關閉一家造紙廠的概率;
(Ⅲ)平均多少家造紙廠需要整改?(其中( )5≈ )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某賓館在裝修時,為了美觀,欲將客房的窗戶設計成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個區(qū)域,其中四邊形ABCD為中心在圓心的矩形,現(xiàn)計劃將矩形ABCD區(qū)域設計為可推拉的窗口.
(1)若窗口ABCD為正方形,且面積大于 m2(木條寬度忽略不計),求四根木條總長的取值范圍;
(2)若四根木條總長為6m,求窗口ABCD面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com