精英家教網 > 高中數學 > 題目詳情

在雙曲線上,、是雙曲線的兩個焦點,,且的三條邊長成等差數列,則此雙曲線的離心率是(  )

 A.2    B.3 C.4    D.5

 

【答案】

D

【解析】設不妨設m<n,則成等差數列,所以,

所以n=4c-2a,m=4c-4a,所以,所以,

所以e=1(舍),因為△F1PF2的三條邊長成等差數列,不妨設|PF2|,|PF1|,|F1F2|成等差數列,分別設為m-d,m,m+d,則由雙曲線定義和勾股定理可知:m-(m-d)=2a,m+d=2c,(m-d)2+m2=(m+d)2,解得m=4d=8a,,故離心率

 

練習冊系列答案
相關習題

科目:高中數學 來源:陜西省寶雞中學2011-2012學年高二下學期期中考試數學理科試題 題型:013

設o為坐標原點,F1,F2是雙曲線(a>0,b>0)的焦點,若在雙曲

線上存在點P,滿足∠F1PF2=60°,∣OP∣=,則該雙曲線的漸近線方程為

[  ]

A.x±y=0

B.x±y=0

C.=0

D.±y=0

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點,焦點在x軸上,右準線為一條漸近線的方程是過雙曲線C的右焦點F2的一條弦交雙曲線右支于P、Q兩點,R是弦PQ的中點.

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動點,且2|AB|=|F1F2|,求線段AB的中點M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準線L的左側能作出直線m:x=a,使點R在直線m上的射影S滿足,當點P在曲線C上運動時,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A (0,)為圓心,1為半徑的圓相切,又知C的一個焦點與A關于y = x對稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點,F1F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;

    (3)設直線y = mx + 1與雙曲線C的左支交于A、B兩點,另一直線l經過M (–2,0)及AB的中點,求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2013屆陜西省高二下學期期中考試理科數學試卷(解析版) 題型:選擇題

為坐標原點,,是雙曲線(a>0,b>0)的焦點,若在雙曲

線上存在點P,滿足∠P=60°,∣OP∣=,則該雙曲線的漸近線方程為(    )

A.x±y=0            B.x±y=0

C. x±=0           D.±y=0

 

查看答案和解析>>

同步練習冊答案