已知空間四邊形OABC,點(diǎn)M,N分別為OA,BC的中點(diǎn),且
OA
=
a
OB
=
b
OC
=
c
,用
a
,
b
,
c
表示
MN
,則
MN
=
1
2
(
a
+
b
+
c
)
1
2
(
a
+
b
+
c
)
分析:作出圖象,由向量的運(yùn)算法則易得答案,其中
ON
=
1
2
(
OB
+
OC
)
是解決問題的關(guān)鍵.
解答:解:如圖結(jié)合向量的運(yùn)算法則可得:
MN
=
ON
-
OM
=
1
2
(
OB
+
OC
)
-
1
2
OA

=
1
2
(
b
+
c
)
-
1
2
a

=
1
2
(-
a
+
b
+
c
)

故答案為:
1
2
(-
a
+
b
+
c
)
點(diǎn)評(píng):本題考查向量的加減混合運(yùn)算及幾何意義,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:黃岡中學(xué) 高二數(shù)學(xué)(下冊(cè))、考試卷3 空間的角度與距離同步測(cè)試卷 題型:044

如圖,已知向量,可構(gòu)成空間向量的一組基底,若,,,在向量已有的運(yùn)算法則基礎(chǔ)上,新定義一種運(yùn)算.顯然a×b的結(jié)果仍為一向量,記作p.

(1)求證:向量p為平面OAB的法向量;

(2)求證:以O(shè)A,OB為邊的平行四邊形OADB面積等于|a×b|;

(3)將得到四邊形OADB按向量平移,得到一個(gè)平行六面體,試判斷平行六面體的體積V與|(a×b)·c|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃岡中學(xué) 高二數(shù)學(xué)(下冊(cè))、考試卷5 簡(jiǎn)單幾何體同步測(cè)試卷(二) 題型:044

如圖,已知向量,可構(gòu)成空間向量的一組基底,若,在向量已有的運(yùn)算法則基礎(chǔ)上,新定義一種運(yùn)算.顯然的結(jié)果仍為一向量.

(1)求證:向量p為平面OAB的法向量;

(2)求證:以O(shè)A,OB為邊的平行四邊形OADB的面積等于

(3)得到四邊形OADB按向量平移,得到一個(gè)平行六面體,試判斷平行六面體的體積V與的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:044

如圖,已知在空間四邊形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,求OA與BC夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案