【題目】如圖,在直三棱柱ABCA1B1C1,AA1ABAC2,ABACM是棱BC的中點點P在線段A1B

(1)若P是線段A1B的中點,求直線MP與直線AC所成角的大。

(2)若的中點,直線與平面所成角的正弦值為,求線段BP的長度.

【答案】(1) .

(2) .

【解析】

(1)為正交基建立如圖所示的空間直角坐標系,利用向量法求得

直線MP與直線AC所成的角的大小為.(2),,

利用向量法求得直線與平面所成角的正弦值,解得,即得線段BP的長度.

為正交基建立如圖所示的空間直角坐標系,

,,,

(1)P是線段A1B的中點,

,

所以

,所以

所以直線MP與直線AC所成的角的大小為

(2),得

,,

,

所以,所以,所以

設平面的法向量,

,,

所以

因為,設直線與平面所成角為

,

所以,所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別是線段, 的中點, .

求證: 平面;

求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形中,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個數(shù)是(

;②

與平面所成的角為;

④四面體的體積為.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面,底面是直角梯形,.

(Ⅰ)求證:平面平面;

(Ⅱ)在棱上是否存在一點,使//平面?若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)處取得極值,對任意恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過橢圓的右焦點,拋物線的焦點為橢圓的上頂點,且交橢圓兩點,點在直線上的射影依次為.

(1)求橢圓的方程;

(2)若直線軸于點,且,當變化時,證明: 為定值;

(3)當變化時,直線是否相交于定點?若是,請求出定點的坐標,并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A(1)五人站一排,必須站右邊,則不同的排法有多少種;

(2)晚會原定的5個節(jié)目已排成節(jié)目單,開演前又加了2個節(jié)目,若將這2 個節(jié)目插入原節(jié)目單中,則不同的插法有多少種.

B.有四個編有1、2、3、4的四個不同的盒子,有編有1、2、3、4的四個不同的小球,現(xiàn)把小球放入盒子里.

①小球全部放入盒子中有多少種不同的放法;

②恰有一個盒子沒放球有多少種不同的放法;

③恰有兩個盒子沒放球有多少種不同的放法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前n項和滿足

1)求數(shù)列的通項公式;

2)若nN*),求數(shù)列的前n項和;

3)是否存在實數(shù)使得恒成立,若存在,求實數(shù)的取值范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面,已知,點分別為的中點.

1)求證:

2)若F在線段上,滿足平面,求的值;

3)若三角形是正三角形,邊長為2,求二面角的正切值.

查看答案和解析>>

同步練習冊答案