已知,函數(shù)
(Ⅰ)當(dāng)時(shí),求的最小值;
(Ⅱ)若在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
(Ⅰ)1;(Ⅱ)

試題分析:(Ⅰ)先求導(dǎo)再討論其單調(diào)性,根據(jù)單調(diào)性可求其最值。(Ⅱ)在區(qū)間上是單調(diào)函數(shù)說明在恒成立。的取值范圍應(yīng)將函數(shù)單調(diào)性問題轉(zhuǎn)化為求最值問題。注意對(duì)的討論。
試題解析:解:(Ⅰ)當(dāng)時(shí),),

所以,當(dāng)時(shí),;當(dāng)時(shí),
所以,當(dāng)時(shí),函數(shù)有最小值.        6分
(Ⅱ)
當(dāng)時(shí),上恒大于零,即,符合要求.
當(dāng)時(shí),要使在區(qū)間上是單調(diào)函數(shù),
當(dāng)且僅當(dāng)時(shí),恒成立.
恒成立.
設(shè),

,所以,即在區(qū)間上為增函數(shù),
的最小值為,所以
綜上, 的取值范圍是,或.     13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像在點(diǎn)處的切線斜率為10.
(1)求實(shí)數(shù)的值;
(2)判斷方程根的個(gè)數(shù),并證明你的結(jié)論;
(21)探究: 是否存在這樣的點(diǎn),使得曲線在該點(diǎn)附近的左、右兩部分分別位于曲線在該點(diǎn)處切線的兩側(cè)? 若存在,求出點(diǎn)A的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像過坐標(biāo)原點(diǎn),且在點(diǎn) 處的切線斜率為.
(1)求實(shí)數(shù)的值;
(2) 求函數(shù)在區(qū)間上的最小值;
(Ⅲ)若函數(shù)的圖像上存在兩點(diǎn),使得對(duì)于任意給定的正實(shí)數(shù)都滿足是以為直角頂點(diǎn)的直角三角形,且三角形斜邊中點(diǎn)在軸上,求點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若,求在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值點(diǎn);
(Ⅲ)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

。
(Ⅰ)求的極值點(diǎn);
(Ⅱ)當(dāng)時(shí),若方程上有兩個(gè)實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)時(shí),。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在實(shí)數(shù)集R上定義運(yùn)算:
(Ⅰ)求的解析式;
(Ⅱ)若在R上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若,在的曲線上是否存在兩點(diǎn),使得過這兩點(diǎn)的切線互相垂直?若存在,求出切線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的值域?yàn)?u>     .

查看答案和解析>>

同步練習(xí)冊(cè)答案