【題目】越接近高考學(xué)生焦慮程度越強(qiáng),四個高三學(xué)生中大約有一個有焦慮癥,經(jīng)有關(guān)機(jī)構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對應(yīng)的正常值變化情況如下表周數(shù)
周數(shù)x | 6 | 5 | 4 | 3 | 2 | 1. |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
其中,,,
(1)作出散點(diǎn)圖;
(2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線性回方程(精確到0.01)
(3)根據(jù)經(jīng)驗觀測值為正常值的0.85~1.06為正常,若1.06~1.12為輕度焦慮,1.12~1.20為中度焦慮,1.20及以上為重度焦慮。若為中度焦慮及以上,則要進(jìn)行心理疏導(dǎo)。若一個學(xué)生在距高考第二周時觀測值為103,則該學(xué)生是否需要進(jìn)行心理疏導(dǎo)?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分別隨機(jī)抽取100桶檢測某項質(zhì)量指標(biāo),由檢測結(jié)果得到如圖的頻率分布直方圖:
(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為,試比較的大小(只要求寫出答案);
(Ⅱ)佑計在甲、乙兩種食用油中各隨機(jī)抽取1桶,恰有一個桶的質(zhì)量指標(biāo)大于20,且另—個桶的質(zhì)量指標(biāo)不大于20的概率;
(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設(shè)表示從乙種食用油中隨機(jī)抽取10桶,其質(zhì)量指標(biāo)值位于(14.55, 38.45)的桶數(shù),求的數(shù)學(xué)期望.
注:①同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,計算得:
②若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時,點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn滿足2an=2+Sn.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)bn=log2a2n+1,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線與軸正半軸有公共點(diǎn),求的取值范圍;
(2)求證:時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某城市有一條從正西方AO通過市中心O后向東北OB的公路,現(xiàn)要修一條地鐵L,在OA,OB上各設(shè)一站A,B,地鐵在AB部分為直線段,現(xiàn)要求市中心O與AB的距離為,設(shè)地鐵在AB部分的總長度為.
按下列要求建立關(guān)系式:
設(shè),將y表示成的函數(shù);
設(shè),用m,n表示y.
把A,B兩站分別設(shè)在公路上離中心O多遠(yuǎn)處,才能使AB最短?并求出最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為預(yù)防病毒爆發(fā),某生物技術(shù)公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于%,則認(rèn)為測試沒有通過),公司選定個流感樣本分成三組,測試結(jié)果如下表:
組 | 組 | 組 | |
疫苗有效 | |||
疫苗無效 |
已知在全體樣本中隨機(jī)抽取個,抽到組疫苗有效的概率是.
(Ⅰ)求的值;
(Ⅱ)現(xiàn)用分層抽樣的方法在全體樣本中抽取個測試結(jié)果,問應(yīng)在組抽取多少個?
(Ⅲ)已知,,求不能通過測試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(t,t1),t∈R,點(diǎn)E是圓上的動點(diǎn),點(diǎn)F是圓上的動點(diǎn),則|PF||PE|的最大值為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com