【題目】《九章算術(shù)》之后,人們學(xué)會(huì)了用數(shù)列的知識(shí)來解決問題.公元5世紀(jì)中國(guó)古代內(nèi)容豐富的數(shù)學(xué)著作《張丘建算經(jīng)》卷上有題為:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”.利用這種思想設(shè)計(jì)的一個(gè)程序框圖如圖,若輸出的S值為九匹三丈(一匹=4丈,一丈=10尺),則框圖中d為( )
A.尺
B.尺
C.尺
D.尺
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2011年,國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國(guó)際數(shù)學(xué)節(jié),來源是中國(guó)古代數(shù)學(xué)家祖沖之的圓周率.為慶祝該節(jié)日,某校舉辦的數(shù)學(xué)嘉年華活動(dòng)中,設(shè)計(jì)了一個(gè)有獎(jiǎng)闖關(guān)游戲,游戲分為兩個(gè)環(huán)節(jié). 第一環(huán)節(jié)“解鎖”:給定6個(gè)密碼,只有一個(gè)正確,參賽選手從6個(gè)密碼中任選一個(gè)輸入,每人最多可輸三次,若密碼正確,則解鎖成功,該選手進(jìn)入第二個(gè)環(huán)節(jié),否則直接淘汰.
第二環(huán)節(jié)“闖關(guān)”:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得10個(gè)、20個(gè)、30個(gè)學(xué)豆的獎(jiǎng)勵(lì),游戲還規(guī)定,當(dāng)選手闖過一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲,也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲能闖過第一關(guān)、第二關(guān)、第三關(guān)的概率分別為 ,選手選擇繼續(xù)闖關(guān)的概率均為 ,且各關(guān)之間闖關(guān)成功與否互不影響.
(1)求某參賽選手能進(jìn)入第二環(huán)節(jié)的概率;
(2)設(shè)選手甲在第二環(huán)節(jié)中所得學(xué)豆總數(shù)為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將三項(xiàng)式(x2+x+1)n展開,當(dāng)n=0,1,2,3,…時(shí),得到以下等式: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
…
觀察多項(xiàng)式系數(shù)之間的關(guān)系,可以仿照楊輝三角構(gòu)造如圖所示的廣義楊輝三角形,其構(gòu)造方法為:第0行為1,以下各行每個(gè)數(shù)是它頭上與左右兩肩上3數(shù)(不足3數(shù)的,缺少的數(shù)計(jì)為0)之和,第k行共有2k+1個(gè)數(shù).若在(1+ax)(x2+x+1)5的展開式中,x7項(xiàng)的系數(shù)為75,則實(shí)數(shù)a的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (t為參數(shù),a>0)以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為 .
(Ⅰ)設(shè)P是曲線C上的一個(gè)動(dòng)點(diǎn),當(dāng)a=2時(shí),求點(diǎn)P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點(diǎn)均在直線l的右下方,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ,其中e為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù) 在x 1處的切線方程;
(2)若存在 ,使得 成立,其中 為常數(shù),
求證: ;
(3)若對(duì)任意的 ,不等式 恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=1﹣ ,其中n∈N* .
(Ⅰ)設(shè)bn= ,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)Cn= ,數(shù)列{CnCn+2}的前n項(xiàng)和為Tn , 是否存在正整數(shù)m,使得Tn< 對(duì)于n∈N*恒成立,若存在,求出m的最小值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若曲線C1:x2+y2﹣4x=0與曲線C2:y(y﹣mx﹣x)=0有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(﹣ , )
B.(﹣ ,0)∪(0, )
C.[﹣ , ]
D.(﹣∞,﹣ )∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,曲線C1的方程為 (θ為參數(shù)),曲線C2的極坐標(biāo)方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點(diǎn).
(1)求|AB|的值;
(2)求點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖所示的程序框圖,則該算法的功能是( )
A.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com