已知函數(shù)f(x)=2x-1+
1
2
,則其反函數(shù)的解析式為
 
考點(diǎn):反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先由y=2x-1+
1
2
解出x,再交換x,y即可.
解答: 解:∵y=2x-1+
1
2
,
∴y-
1
2
=2x-1,
兩邊取以2為底的對(duì)數(shù)得log2(y-
1
2
)=x-1,
則x=1+log2(y-
1
2
),
交換x,y得y=1+log2(x-
1
2
),(x>
1
2
),
故答案為:y=1+log2(x-
1
2
).
點(diǎn)評(píng):本題考查反函數(shù)的求法,利用反函數(shù)的定義法求解,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)(tanx+
1
tanx
)cos2x=( 。
A、sinx
B、tanx
C、
1
sinx
D、
1
tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從空間一點(diǎn)P向二面角α-1-β的兩個(gè)平面作垂線PE,PF,E,F(xiàn)為垂足,若∠EPF=60°,則二面角的平面角的大小為(  )
A、60°B、120°
C、60°或120°D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為4正三角形,AA1⊥平面ABC,AA1=2
6
,M為A1B1的中點(diǎn).
(Ⅰ)求證:MC⊥AB;
(文科)(Ⅱ)求三棱錐A1-ABP的體積.
(理科)(Ⅱ)若點(diǎn)P為CC1的中點(diǎn),求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-x2,a∈R,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥1時(shí),f(x)≤0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)設(shè)a>0,若A(x1,y1),B(x2,y2)為曲線y=f(x)上的兩個(gè)不同點(diǎn),滿足0<x1<x2,且?x3
(x1,x2),使得曲線y=f(x)在x=x3處的切線與直線AB平行,求證:x3
x1+x2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F(1,0),短軸的一個(gè)端點(diǎn)B到F的距離等于焦距.
(Ⅰ)求橢圓C方程;
(Ⅱ)過(guò)點(diǎn)F的直線l與橢圓C交于不同的兩點(diǎn)M,N,是否存在直線l,使得△BFM與△BFN的面積之比為1?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:3
A
3
x
=2
A
2
x+1
+6
A
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)E在正方體ABCD-A1B1C1D1的棱BC上,F(xiàn)是CD的中點(diǎn),則二面角C1-EF-C的余弦值的取值范圍是( 。
A、(0,
6
6
B、(
6
6
,1)
C、(0,
7
7
D、(0,
30
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).
(1)求證:AF⊥平面PCD;
(2)求證:平面PCE⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案