【題目】將函數(shù)f(x)=3sin(4x+ )圖象上所有點的橫坐標伸長到原來的2倍,再向右平移 個單位長度,得到函數(shù)y=g(x)的圖象,則y=g(x)圖象的一條對稱軸是(
A.x=
B.x=
C.
D.

【答案】C
【解析】解:將函數(shù)f(x)=3sin(4x+ )圖象上所有點的橫坐標伸長到原來的2倍,可得函數(shù)y=3sin(2x+ )的圖象, 再向右平移 個單位長度,可得y=3sin[2(x﹣ )+ ]=3sin(2x﹣ )的圖象,故g(x)=3sin(2x﹣ ).
令 2x﹣ =kπ+ ,k∈z,得到 x= π+ ,k∈z.
則得 y=g(x)圖象的一條對稱軸是 ,
故選:C.
根據(jù)函數(shù)y=Asin(ωx+)的圖象變換規(guī)律,得到g(x)=3sin(2x﹣ ),從而得到g(x)圖象的一條對稱軸是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知單位向量 , 的夾角為 ,設(shè)向量 =x +y ,x,y∈R,若| |=1,則x+2y的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的三個內(nèi)角分別為A,B,C.向量 共線. (Ⅰ)求角C的大。
(Ⅱ)設(shè)角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex[x2+(a+1)x+2a﹣1].
(1)當a=﹣1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的不等式f(x)≤ea在[a,+∞)上有解,求實數(shù)a的取值范圍;
(3)若曲線y=f(x)存在兩條互相垂直的切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)正項數(shù)列{an}的前n項和為Sn , 且a +2an=4Sn(n∈N*).
(1)求an;
(2)設(shè)數(shù)列{bn}滿足:b1=1,bn= (n∈N* , n≥2),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),則a+2b的取值范圍為(
A.
B.
C.(6,+∞)
D.[6,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中, , ,△PAB和△PBD都是邊長為2的等邊三角形,設(shè)P在底面ABCD的射影為O.
(1)求證:O是AD中點;
(2)證明:BC⊥PB;
(3)求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2lnx+ ﹣mx(m∈R).
(Ⅰ)當m=﹣1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f(x)在(0,+∞)上為單調(diào)遞減,求m的取值范圍;
(Ⅲ)設(shè)0<a<b,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圖甲中的圖象對應(yīng)的函數(shù)y=f(x),則圖乙中的圖象對應(yīng)的函數(shù)在下列給出的四式中只可能是(  )

A.y=f(|x|)
B.y=|f(x)|
C.y=f(﹣|x|)
D.y=﹣f(|x|)

查看答案和解析>>

同步練習冊答案