【題目】已知斜率為1的直線與拋物線交于兩點,中點的橫坐標(biāo)為2.
(1)求拋物線的方程;
(2)設(shè)直線交軸于點,交拋物線于點,關(guān)于點的對稱點為,連接并延長交于點.除以外,直線與是否有其它公共點?請說明理由.
【答案】(1); (2)見解析.
【解析】
(1)設(shè)點A,B坐標(biāo),將A,B坐標(biāo)代入曲線C的方程,利用點差法計算即可得到p值;
(2)先求坐標(biāo),得到直線MH方程,與拋物線方程聯(lián)立,利用判別式可得結(jié)論.
(1)設(shè) ,,直線的斜率為,又因為,都在曲線上,
所以 ① ②
-得,
由已知條件得,得,
所以拋物線的方程是.
(2)由題意,可知點的坐標(biāo)分別為,,,
從而可得直線的方程為,聯(lián)立方程,
解得,.依題意,點的坐標(biāo)為,由于,,可得直線的方程為,
聯(lián)立方程,整理得,
則,從而可知和只有一個公共點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】符號表示不超過的最大整數(shù),如,,定義函數(shù),那么下列說法正確的個數(shù)是( )
函數(shù) 的定義域為 R ,值域為 1, 0
②方程 有無數(shù)多個解
③對任意的,都有成立
④函數(shù)是單調(diào)減函數(shù)
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為,當(dāng)時,產(chǎn)品為一等品;當(dāng)時,產(chǎn)品為二等品;當(dāng)時,產(chǎn)品為三等品.現(xiàn)有甲、乙兩條生產(chǎn)線,各生產(chǎn)了100件該產(chǎn)品,測量每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面的試驗結(jié)果.(以下均視頻率為概率)
甲生產(chǎn)線生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值的頻數(shù)分布表:
指標(biāo)值分組 | ||||
頻數(shù) | 10 | 30 | 40 | 20 |
乙生產(chǎn)線產(chǎn)生的產(chǎn)品的質(zhì)量指標(biāo)值的頻數(shù)分布表:
指標(biāo)值分組 | |||||
頻數(shù) | 10 | 15 | 25 | 30 | 20 |
(1)若從乙生產(chǎn)線生產(chǎn)的產(chǎn)品中有放回地隨機(jī)抽取3件,求至少抽到2件三等品的概率;
(2)若該產(chǎn)品的利潤率與質(zhì)量指標(biāo)值滿足關(guān)系:,其中,從長期來看,哪條生產(chǎn)線生產(chǎn)的產(chǎn)品的平均利潤率更高?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為,其左焦點在直線上.
(1)若直線與橢圓交于兩點,求的值;
(2)求橢圓的內(nèi)接矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C:與直線l:交于M,N兩點.
當(dāng)時,求的面積的取值范圍;
軸上是否存在點P,使得當(dāng)k變動時,總有?若存在,求以線段OP為直徑的圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱 中,側(cè)面和側(cè)面都是矩形, 是邊長為的正三角形, 分別為的中點.
(1)求證: 平面;
(2)求證:平面平面.
(3)若平面,求棱的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間
(1)求函數(shù)的所有“保值”區(qū)間
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com