【題目】已知函數(shù)(為常數(shù),).
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若函數(shù)在(,是自然對(duì)數(shù)的底數(shù))上有兩個(gè)零點(diǎn),求的最小值.
【答案】見(jiàn)解析
【解析】(1)函數(shù)的定義域?yàn)镽,由,得. ...............2分
①當(dāng)時(shí),對(duì)都有,當(dāng)變化時(shí),,的變化如下表:
0 | |||
+ | 0 | _ | |
增 | 極大值 | 減 |
此時(shí),的遞增區(qū)間為,遞減區(qū)間為. ................4分
②當(dāng)時(shí),.由,得或.當(dāng)變化時(shí),,的變化如下表:
0 | |||||
+ | 0 | - | 0 | + | |
增 | 極大值 | 減 | 極小值 | 增 |
此時(shí),的遞增區(qū)間為,,遞減區(qū)間為.
③當(dāng)時(shí),.此時(shí),的遞增區(qū)間為,無(wú)減區(qū)間. .....6分
④當(dāng)時(shí),.由,得或.當(dāng)變化時(shí),,的變化如下表:.
0 | |||||
+ | 0 | - | 0 | + | |
增 | 極大值 | 減 | 極小值 | 增 |
此時(shí),的遞增區(qū)間為,,遞減區(qū)間為.
綜上所述,當(dāng)時(shí),的遞增區(qū)間為,遞減區(qū)間為;
當(dāng)時(shí),的遞增區(qū)間為,,遞減區(qū)間為;
當(dāng)時(shí),的遞增區(qū)間為,無(wú)減區(qū)間;
當(dāng)時(shí),的遞增區(qū)間為,,遞減區(qū)間為. ……8分
(2)當(dāng)時(shí),.由(1)可知,在上為增函數(shù),
且的極大值為,所以在上有一個(gè)零點(diǎn).
由,且在上為減函數(shù),則必有. ................9分
要想函數(shù)在上還有一個(gè)零點(diǎn),同時(shí)考慮到函數(shù)在上為增函數(shù),
則只需,且.又因?yàn)?/span>,
且
,
所以當(dāng)時(shí),函數(shù)在還有一個(gè)零點(diǎn),則的最小值為2. ................12分
綜上所述,若在上有兩個(gè)零點(diǎn)時(shí),的最小值為2. ……13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量, ,設(shè)函數(shù),且的圖象過(guò)點(diǎn)和點(diǎn).
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移()個(gè)單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)直線系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)命題:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S ABCD中,平面SAD⊥平面ABCD.四邊形ABCD為正方形,且點(diǎn)P為AD的中點(diǎn),點(diǎn)Q為SB的中點(diǎn).
(1)求證:CD⊥平面SAD.
(2)求證:PQ∥平面SCD.
(3)若SA=SD,點(diǎn)M為BC的中點(diǎn),在棱SC上是否存在點(diǎn)N,使得平面DMN⊥平面ABCD?若存在,請(qǐng)說(shuō)明其位置,并加以證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且A,B,C成等差數(shù)列
(1)若b=2 ,c=2,求△ABC的面積;
(2)若a,b,c成等比數(shù)列,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,一個(gè)動(dòng)圓截直線和所得的弦長(zhǎng)分別為8,4.
(1)求動(dòng)圓圓心的軌跡方程;
(2)在軌跡上是否存在這樣的點(diǎn):它到點(diǎn)的距離等于到點(diǎn)的距離?若存在,求出這樣的點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)函數(shù),若是的極值點(diǎn),求的值并討論的單調(diào)性;
(2)函數(shù)有兩個(gè)不同的極值點(diǎn),其極小值為為,試比較與的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理科)在平面直角坐標(biāo)系中, 是橢圓上的一個(gè)動(dòng)點(diǎn),點(diǎn),則的最大值為( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com