(本小題滿分14分)

已知橢圓(a>b>0)的離心率e=,連接橢圓的四個頂點得到的菱形的面積為4.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點A、B,已知點A的坐標(biāo)為(-a,0).

      (i)若,求直線l的傾斜角;

      (ii)若點Q在線段AB的垂直平分線上,且.求的值.

【解析】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、兩點間的距離公式、直線的傾斜角、平面向量等基礎(chǔ)知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì)及數(shù)形結(jié)合的思想,考查綜合分析與運算能力.滿分14分.

(Ⅰ)解:由e=,得.再由,解得a=2b.

由題意可知,即ab=2.

解方程組得a=2,b=1.

所以橢圓的方程為.

(Ⅱ)(i)解:由(Ⅰ)可知點A的坐標(biāo)是(-2,0).設(shè)點B的坐標(biāo)為,直線l的斜率為k.則直線l的方程為y=k(x+2).

于是A、B兩點的坐標(biāo)滿足方程組消去y并整理,得

.

,得.從而.

所以.

,得.

整理得,即,解得k=.

所以直線l的傾斜角為.

(ii)解:設(shè)線段AB的中點為M,由(i)得到M的坐標(biāo)為.

以下分兩種情況:

(1)當(dāng)k=0時,點B的坐標(biāo)是(2,0),線段AB的垂直平分線為y軸,于是

,得。

(2)當(dāng)時,線段AB的垂直平分線方程為。

,解得

,,

整理得。故。所以。

綜上,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案