(2012•寶山區(qū)一模)設(shè)f(x)是定義在R上的奇函數(shù),且滿足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,則實(shí)數(shù)m的取值范圍是
(-1,
2
3
(-1,
2
3
分析:由f(x)是定義在R上的奇函數(shù),且滿足f(x+3)=f(x),知f(-1)=f(2),-f(2)=f(1)>1,故f(2)=
2m-3
m+1
<-1,由此能求出實(shí)數(shù)m的取值范圍.
解答:解:∵f(x)是定義在R上的奇函數(shù),且滿足f(x+3)=f(x),
∴f(x)=-f(-x),f(1)=-f(-1),f(-1)=f(2),
∴-f(2)=f(1)>1,f(2)<-1,
∴f(2)=
2m-3
m+1
<-1,
解得-1<m<
2
3
,
故答案為:(-1,
2
3
).
點(diǎn)評(píng):本題考查函數(shù)的周期性和奇偶性的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)兩個(gè)圓錐有等長(zhǎng)的母線,它們的側(cè)面展開(kāi)圖恰好拼成一個(gè)圓,若它們的側(cè)面積之比為1:2,則它們的體積比是
1:
10
1:
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)已知函數(shù)f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差數(shù)列.
(1)求數(shù)列{an}(n∈N*)的通項(xiàng)公式;
(2)設(shè)g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整數(shù)解的個(gè)數(shù),求g(k);
(3)記數(shù)列{
12
an
}
的前n項(xiàng)和為Sn,是否存在正數(shù)λ,對(duì)任意正整數(shù)n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)已知等差數(shù)列{an},a2=-2,a6=4,則a4=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶山區(qū)一模)方程x2-2x+5=0的復(fù)數(shù)根為
1±2i
1±2i

查看答案和解析>>

同步練習(xí)冊(cè)答案