【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知點(diǎn),直線:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線和曲線的交點(diǎn)為,.
(1)求直線和曲線的普通方程;
(2)求.
【答案】(1)見(jiàn)解析;(2).
【解析】分析:(1)由代入消元法,可得直線的普通方程;運(yùn)用x=ρcosθ,y=ρsinθ,可得曲線C的普通方程;
(2)求得直線l的標(biāo)準(zhǔn)參數(shù)方程,代入曲線C的普通方程,可得二次方程,運(yùn)用韋達(dá)定理和參數(shù)的幾何意義,即可得到所求和.
詳解:(1)直線:(為參數(shù)),消去,可得直線的普通方程為,曲線的極坐標(biāo)方程為,即為,由,可得曲線的普通方程為.
(2)直線的標(biāo)準(zhǔn)參數(shù)方程為:(為參數(shù)),代入曲線:,可得,
有,,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,曲線在處的切線方程為.
(1)求的解析式;
(2)當(dāng)時(shí),求證:;
(3)若對(duì)任意的恒成立,則實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視廠家準(zhǔn)備在五一舉行促銷(xiāo)活動(dòng),現(xiàn)在根據(jù)近七年的廣告費(fèi)與銷(xiāo)售量的數(shù)據(jù)確定此次廣告費(fèi)支出.廣告費(fèi)支出x(萬(wàn)元)和銷(xiāo)售量y(萬(wàn)臺(tái))的數(shù)據(jù)如下:
(1)若用線性回歸模型擬合y與x的關(guān)系,求出y關(guān)于x的線性回歸方程(其中;參考方程:回歸直線,)
(2)若用模型擬合y與x的關(guān)系,可得回歸方程,經(jīng)計(jì)算線性回歸模型和該模型的分別約為0.75和0.88,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更好;
(3)已知利潤(rùn)z與x,y的關(guān)系為z=200y﹣x.根據(jù)(2)的結(jié)果回答:當(dāng)廣告費(fèi)x=20時(shí),銷(xiāo)售量及利潤(rùn)的預(yù)報(bào)值是多少?(精確到0.01)參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,焦距為,點(diǎn)為橢圓上一點(diǎn),,的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓的上頂點(diǎn),過(guò)橢圓內(nèi)一點(diǎn)的直線交橢圓于兩點(diǎn),若與的面積比為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,,,為中點(diǎn).
(1)證明:平面;
(2)若平面,是邊長(zhǎng)為2的正三角形,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形中,為的中點(diǎn),,,,現(xiàn)在沿將折起使點(diǎn)到點(diǎn)P處,得到三棱錐,且平面平面.
(1)棱上是否存在一點(diǎn),使得平面?請(qǐng)說(shuō)明你的結(jié)論;
(2)求證:平面;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線:的焦點(diǎn)做直線交拋物線于,兩點(diǎn),的最小值為2.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過(guò),分別做拋物線的切線,兩切線交于點(diǎn),且直線,分別與軸交于點(diǎn),,記和的面積分別為和,求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com