精英家教網 > 高中數學 > 題目詳情

設數列{an}滿足a1=2,a2a4=8,且對任意n∈N*,函數f(x)=(anan+1an+2)xan+1cos xan+2sin x滿足f=0.
(1)求數列{an}的通項公式;
(2)若bn=2,求數列{bn}的前n項和Sn.

(1)n+1.(2)Snn2+3n+1-

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知各項均為正數的數列{an}的前n項和滿足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列{an}的公差不為零,a1=25,且a1,a11,a13成等比數列.
(1)求{an}的通項公式;
(2)求a1+a4+a7+…+a3n-2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在等差數列{an}中,a3a4a5=84,a9=73.
(1)求數列{an}的通項公式;
(2)對任意m∈N*,將數列{an}中落入區(qū)間(9m,92m)內的項的個數記為bm,求數列{bm}的前m項和Sm.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知等差數列的前項和為,且滿足:,
(1)求數列的通項公式;
(2)設,數列的最小項是第幾項,并求出該項的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知{an}為等差數列,且a2=-1,a5=8.
(1)求數列{|an|}的前n項和;
(2)求數列{2n·an}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在等差數列和等比數列中,,項和.
(1)若,求實數的值;
(2)是否存在正整數,使得數列的所有項都在數列中?若存在,求出所有的,若不存在,說明理由;
(3)是否存在正實數,使得數列中至少有三項在數列中,但中的項不都在數列中?若存在,求出一個可能的的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設正數列的前項和為,且
(1)求數列的首項;
(2)求數列的通項公式;
(3)設,是數列的前項和,求使得對所有都成立的最小正整數

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)已知直角的三邊長,滿足 
(1)已知均為正整數,且成等差數列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(2)已知成等比數列,若數列滿足,證明數列中的任意連續(xù)三項為邊長均可以構成直角三角形,且是正整數.

查看答案和解析>>

同步練習冊答案