【題目】已知一次函數(shù)是上的減函數(shù),,且.
(1)求;
(2)若在上單調(diào)遞減,求實數(shù)m的取值范圍;
(3)當(dāng)時,有最大值1,求實數(shù)m的值.
【答案】(1)(2)(3)m的值為
【解析】
(1)設(shè),代入化簡整理,解方程即可得到所求解析式;
(2)求得的解析式,以及對稱軸,討論對稱軸和區(qū)間的關(guān)系,解不等式可得所求范圍;
(3)求得的對稱軸,討論對稱軸和區(qū)間的關(guān)系,結(jié)合單調(diào)性,可得最大值,解方程即可得到所求值.
解析(1)依題意設(shè),
則,
因此,
又,所以.
故;
(2)由(1)知,,
其圖象的對稱軸為直線,且圖象開口向下,
又已知在上單調(diào)遞減,
所以可得,解得,
所以m的取值范圍是;
(3)當(dāng),即時,在上遞減,
此時,解得;
當(dāng),即時,在上遞增,在上遞減,
此時,
即,解得或,均不符合題意.
綜上所述,m的值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),任取,若函數(shù)在區(qū)間上的最大值為,最小值為,記.
(1)求函數(shù)的最小正周期及對稱軸方程;
(2)當(dāng)時,求函數(shù)的解析式;
(3)設(shè)函數(shù),,其中為參數(shù),且滿足關(guān)于的不等式有解,若對任意,存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時,函數(shù)恰有兩個零點,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=|x﹣m|+|x|,m∈N*,存在實數(shù)x使f(x)<2成立.
(1)求實數(shù)m的值;
(2)若α≥1,β≥1,f(α)+f(β)=4,求證:≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題P:函數(shù)且|f(a)|<2,命題Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=,
(1)分別求命題P、Q為真命題時的實數(shù)a的取值范圍;
(2)當(dāng)實數(shù)a取何范圍時,命題P、Q中有且僅有一個為真命題;
(3)設(shè)P、Q皆為真時a的取值范圍為集合S,,若RTS,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動點,為線段的中點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點與上、下頂點構(gòu)成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點且不平行于軸的動直線與橢圓相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com